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ABSTRACT  
 
Sketch-based object recognition and classification has become an important research topic in vision applications.  In the recent years, 

Convolutional Neural Networks (CNNs), have emerged as a powerful framework for feature representation and recognition for variety of 

applications in image analysis. But there exists few works that utilized CNNs in sketch classification domain. In this paper, a few deep CNNs 

are trained to improve the accuracy of sketch image classification in comparison with current state of the art. The size of inputs in the 

architectures of CNNs that currently have used for sketch recognition, has considered to be greater than 200×200 pixels which has limited 

the accuracy of classification. In this paper, tiny images are used as inputs, thus the architecture of CNNs are simplified and can be trained 

in a reasonable time, in CPU mode. These simplified CNN architectures are used to recognize sketch categories of TU-Berlin sketch dataset. 

The results show that the proposed method can outperforms state of the art performance of sketch recognition in addition to increasing the 

speed of training.  

 

INTRODUCTION  
  
Sketches are very intuitive to humans and have long been used as an effective communicative tool. 

Sketch can be seen as abstract representation of variety of ideas. Moreover, sketch images can convey 

information that is hard to describe using text, without requiring a tremendous amount of effort. With the 

proliferation of touch devices, sketch has been attracted more and more researches attentions in recent 

years. There exist a wide range of interesting applications including sketch recognition [1-3], sketch-based 

image retrieval [4, 5] and sketch-based shape [6, 7] and 3D model retrieval [7, 8].  

 

Recognizing free-hand sketches is an extremely challenging task. This is due to a number of reasons [3]: 

(1) sketches are highly iconic and abstract; (2) due to the free-hand nature, the same object can be drawn 

with hugely varied levels of detail/abstraction; (3) sketches lack visual cues, such as color and texture 

information.  

Traditional methods on sketch recognition generally follows the conventional image classification 

paradigm that is, extracting hand-crafted features from sketch images followed by feeding them to a 

classifier. Most hand-crafted features traditionally used for photos such as HOG [9], SIFT [10] and shape 

context [11], have been employed, which are often coupled with bag of visual words to yield a final feature 

representations that can then be classified. But these features are sensitive to the view perspectives and 

some appearance cues of drawn sketches. Furthermore, the ability of learning algorithms to train the 

classification models are also influenced by the handcrafted features and the capacity of classifiers like 

SVM to memorize feature information. 

Learning robust and invariant representation has been a long-standing goal in computer vision. In 

comparison to hand-crafted visual features, features learned by deep neural networks (DNNs) have 

recently been shown more capable of capturing abstract concepts invariant to various phenomenon in 

visual world [12, 13]. In the recent years, Convolutional Neural Networks (CNNs), a specific type of DNNs, 

have emerged as a powerful framework for feature representation and recognition for a variety of image 

domains. A deep CNN is able to learn basic filters automatically and combine them hierarchically to enable 

the description of latent concepts for pattern recognition, and have successfully been applied to large 

image datasets such as ImageNet [12], MNIST [14], CIFAR-10/100 [15] for image classification. However, 

the domain of sketch images has been rarely explored. With emerge of large-scale sketch datasets such 

as TU-Berlin (Eitz, et al, 2012), using CNNs in sketch classification has attracted more attention [3, 16-18]. 

 

In this paper, a few deep CNNs are trained to improve the accuracy of sketch image classification, in 

comparison with current state of the art. The contribution of the paper is as follows: (1) Working with tiny 

input images: in the conventional methods, rather large scale images were used to extract feature vectors 

to feed them to a classifier as a descriptor of the original images to be categorized. But mining these raw 

images, in large numbers, using DNNs is a difficult and practically unefficient task. Therefore, in the case 

of DNNs, using smaller scales of images has been preferred, because the amount of information in the 

down-scaled image is often not changed in comparison with the original image. Currently a commonly used 

image scale as the input size of CNNs is 32×32 pixels. But in the current related works in sketch 

classification (that summarized in the next section), this input scale have not been considered. Thus in this 

paper, the input size is fixed as 32×32 to experiment more possibilities. (2) Fewer number of layers and 

neurons: the number of layers and neurons in DNNs, due to cover different levels of information, is very 

important. But excessive levels, slow down the learning process. On the other hand, the amount of 

information in sketch images are much lower that colorful, texturized natural images, and it seems that 
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CNNs can process such images without need of very deep architectures like AlexNet [12]. Therefore this 

paper tries to use simple but powerful networks that can be trained in CPU mode (i.e. not to use GPU 

hardware to accelerate training process) in an affordable amount of time. (3) Accuracy of classification: it 

is found that these simple architectures outperforms state-of-the-art performance for sketch recognition, 

without the need for large scale input images, complicated augmentations, specific activation functions 

and response normalization. The recognition frameworks are evaluated on TU-Berlin [1], the publicly 

available benchmark dataset, containing thousands of freehand sketches.  

The rest of the paper is organized as follows: first the related literature is reviewed in the second section. 

Then the trained CNN architectures, used in this work, are presented. The experiments and results are 

showed in fourth section and the paper is concluded in the final section. 

RELATED WORKS 

In the first attempt to utilize CNNs to recognize hand-drawn sketches and object categories, [16], two 

popular CNNs – AlexNet CNN [12] and a modified version of LeNet CNN [14] were used for experiments, 

and results showed minor improvements over the conventional state-of-the-art. 

The major work on utilizing Deep CNNs for free-hand sketch recognition was Sketch-a-Net which firstly was 

introduced in [17] and further revised in [3]. Sketch-a-Net aimed to exploit the unique characteristics of 

sketches, including multiple levels of abstraction and being sequential in nature. In the work, ensemble 

fusion and pre-training strategies were applied to boost the recognition performance. Compared to the 

earlier version of Sketch-a-Net, a number of modifications were applied in the latest network. In the 

second version, the authors used stroke timing and geometry information to define a data augmentation 

strategy that synthesizes sketches at varying abstraction levels, and deformed them to achieve a richer 

training set and to alleviate the problem of over-fitting to scarce sketch data. They achieved 77.95% 

classification accuracy on TU-Berlin sketch dataset [1]. 

The very recent attempt in this area is [18], where another deep convolutional neural network, similarly 

named SketchNet, was proposed for sketch classification. But the main purpose of the paper is to 

automatically learn the shared structures that exist between sketch images and real images. In order to do 

this, a triplet was composed of sketch, positive and negative real image that was developed as the input of 

the neural network. The authors used SoftMax as lost function and ranked the results to make the positive 

pairs to obtain a higher score comparing over negative ones to achieve robust representation. To construct 

the auxiliary repository, the real images were collected from the web which covered all the sketch 

categories in the TU-Berlin sketch dataset. To extract the real reference images for each training sketch, 

first a preliminary model was trained based on AlexNet [12] following the fine-tuning process. Afterwards, 

the top K predicted category labels of each training sketch were extracted based on the pre-trained 

AlexNet model. For each training sketch, the most visual similar real images were found from the image 

sets of top predicted categories to construct the training pairs. Thus, the sketch with the real images which 

is in the same class was used to generate the positive image pair while the sketch with the real images 

which is in distinct classes was defined as negative image pair. SketchNet contained three subnets: R-Net 

was used to extract features from the real images. S-Net was applied on the sketch images. And C-Net was 

proposed to discover the common structures between real images and sketches. Finally, the predictions 

were merged together to achieve the final results. The best classification accuracy, achieved in the paper 

on TU-Berlin sketch benchmark, was 80.42%.  

Another related paper that used CNNs in sketch recognition is [19], in which a CNN based classifier for 3D 

shapes using 2D image renderings of those shapes was proposed. In particular, a CNN was trained on a 

fixed set of rendered views of a 3D shape and was provided with a single view at test time. The authors 

used their method as a data augmentation method and applied in the context of sketch recognition on 

SketchClean dataset [2]. SketchClean is a simpler version of TU-Berlin sketch dataset [1] on which 

humans can achieve 93% recognition accuracy compared to 73% on original dataset. They achieved 

87.2% sketch classification accuracy on this simplified dataset. 
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In all above mentioned works, input images have considered greater than 200×200 pixels and extensive 

endeavors have been applied to achieve the results. But at the point of view of this paper, such a great 

size (for deep CNNs to work on) is not necessary, specifically on sketch datasets.  It is possible to work 

with smaller sizes and achieve even better results with modification of current state-of-the-art CNN 

architectures. 

TRAINED CNN ARCHITECTURES  

Designing an architecture for CNN is an important step to achieve impressive results on vision problems. 

Architectures may vary with type of images and especially when input image sizes are different. In this 

paper, the size of input images is considered to be 32×32 pixels thus the CNN architectures, proposed in 

previous works, cannot be applied without modifications on these images (for example applying 15×15 

filters in the first layer of the CNN, in the case of Sketch-a-Net, on input size of 32×32 pixels is not 

rational). Therefor the architectures that were used before (Sato et al, 2015) to classify images of size 

32×32 pixels include MNIST-CNN and CIFAR-CNN and an architecture that inspired from [20] (for ease of 

reference, is named TS-CNN, stands for Tiny Sketch CNN) were trained to sketch classification task. These 

architectures are described in [Table 1].  

In all networks, the ReLU activation function [12] was used for each convolutional layer and MaxPooling for 

each pooling layer. In the architectures, randomness to the networks, such as Dropout [21] or 

DropConnect [22] was not imposed during training. In [Table 1], records named “Input” specifies the map 

size and the number of inputs and output maps of the below and the above layer; the first and second 

elements are the width and height of the input (output) map of the layer below (above), and the third and 

fourth elements are the number of input (output) maps of the below (above) layer and the number of 

output (input) maps of the below (above) layer, respectively. Also, the definition of layers in [Table 1] 

consists of three parts; type of layer, filter size and stride length, respectively. The fully connected layers 

are defined as convolutional layers with the filter size of 1×1 as it is conventional in MatConvNet [23]. The 

final layer has 250 output units corresponding to 250 categories of the dataset, upon which a SoftMax 

loss is placed. 

EXPERIMENTAL RESULTS 

In this section, the results of the proposed methods on the task of sketch classification are presented. The 

Table 1: The architecture of proposed CNNs 

Layers MNIST-CNN CIFAR-CNN TS-CNN 

Input 32×32×1×20 32×32×1×64 32×32×1×96 

L1 
Conv - 5×5 - 1 
Pool - 2×2 - 2 

Conv - 3×3 - 1 
Pool - 3×3 - 3 

Conv - 5×5 - 1 
Pool - 3×3 - 2 

Input 14×14×20×40 10×10×64×128 14×14×96×192 

L2 
Conv - 5×5 - 1 
Pool - 2×2 - 2 

Conv - 3×3 - 1 
Pool - 2×2 - 2 

Conv - 5×5 - 1 
Pool - 3×3 - 2 

Input 5×5×40×150 4×4×128×256 4×4×192×192 

L3 
Conv - 3×3 - 1 
Pool - 2×2 - 2 

Conv - 3×3 - 1 
Pool - 2×2 - 2 

Conv - 3×3 - 1 
 

Input 1×1×150×250 1×1×256×128 2×2×192×192 

L4 Conv - 1×1 - 1 Conv - 1×1 - 1 Conv - 1×1 - 1 

Input 1×1×150×250 1×1×128×250 2×2×192×250 

L4 ---- Conv - 1×1 - 1 Conv - 1×1 - 1 

Loss SoftMax 

 

 
Fig. 1: Comparison of training and validation curves of the proposed networks. 

………………………………………………………………………………………………………………………………………………………………………………

…. 

 

 

http://www.iioab.org/


SUPPLEMENT ISSUE  

 

www.iioab.org    | Atabay 2016 | IIOABJ | Vol. 7 | Suppl 5 | 337-341 | 

 
 

340 

networks are implemented using MatConvNet [23] on the TU-Berlin sketch dataset [1]. All images are 

down-scaled to 32×32 pixels and each pixel’s value is converted to range [0, 1]. The conventional data 

augmentation methods are applied by replicating the sketches with a number of transformations. 

Specifically, for each input sketch, horizontal reflection and horizontal and vertical shifts (3 pixels) are 

done. These data augmentation strategies increase the training data size by a factor of 10. These 200000 

images are randomly split into 70% train, 10% validation and 20% test sets.  

In all experiments, the networks are trained by stochastic gradient descent with 0.9 momentum. The 

learning rate is set to be 0.001. The weight decay parameter is 0.0005. Initial weights are selected 

randomly from standard normal distribution, multiplied by 0.01. The mini-batch size is set to 100. All 

networks were trained up to 100 epochs. Overall training takes less than one day based on a PC with 3.30 

GHz CPU and 8 GB RAM, using CPU mode. The training and validation curves of all three networks are 

depicted in [Fig. 1]. 

In [Fig. 1] the training process of CNNs can be compared. This figure demonstrates that TSCNN converges 

faster than the other CNNs. This quick convergence also lead to the better results after 100 epochs. 

The sketch recognition results of the proposed CNNs, compared to the related works, are reported in 

[Table 2]. The results of SketchNet and Sketch-a-Net are stated as they were reported in corresponding 

works, (Zhang, et al, 2016) and (Yu, et al, 2016), respectively. In the case of SketchNet, only top 1 

accuracy was mentioned in the original paper and for Sketch-a-Net the authors does not specified the type 

of accuracy thus it is considered as the top 1 accuracy. This table shows that TS-CNN significantly 

outperforms other methods, especially in comparison with SketchNet and Sketch-a-Net which specifically 

designed for sketch classification. 

The results show that working with small size of input images, not only eliminates the need for additional 

layers but also increases the accuracy of learning. This phenomenon is reasonable because the sketches 

are so powerful in conveying information, even in small size and for CNNs working with small sized input is 

more convenient. 

It must be noted that the architectures examined in this work were inspired from other related works and 

most of the hyper-parameters were set to the best common values. Thus, the results can be even better by 

applying recent modifications and discoveries on deep neural networks.  

CONCLUSIONS 

In this paper, a few different CNN architectures inspired by latest achievements on training DNNs were 

applied to sketch classification task with tiny input sketches. It is observed that small input size, 

dramatically improves the current classification accuracies on TU-Berlin sketch benchmark and simplifies 

the CNN architectures which also lead to increase in speed of training. Most of the hyper parameters in 

this work are set to common best fixed values, thus it is not hard to believe that even better results can be 

achieved with further investigations on architectures and hyper parameters and applying recent 

modifications and discoveries on deep neural networks. 
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