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ABSTRACT 
 
In this paper we are going to establish some necessary and sufficient conditions for the shapes of the smooth trajectories of the motion of 

the moving particles in the three dimensional general inner product space. 

 

INTRODUCTION 
  

The Frenet–Serret formulas describe the kinematic properties of a particle moving along a smooth 

trajectory in the three dimensional Euclidean space 𝑅3, with usual inner product. More specifically, the 

formulas describe the derivatives of the tangent, normal, and binormal unit vectors in terms of each 

other.  

In [1], using linear algebra, the Frenet–Serret formulas would be generalized to three dimensional 

Euclidean spaces with general inner product  𝜎. In this paper, using the results obtained in mentioned 

reference, we would like to obtain some necessary and sufficient conditions for some kinds of smooth 

trajectories in terms of generalized Frenet- Serret formulas [1].  

Note that a plane in the inner product space (𝑅3,𝜎) can be described as the union of all the 

perpendiculars to a given line at a given point. In vector language, the plane through 𝑝 orthogonal to 𝑞 ≠
0 consists of all points 𝑟 in 𝑅3 such that 𝜎(𝑟 − 𝑝, 𝑞) = 0.  

 

BASIC PROPERTIES  
 

In the following theorem, a necessary and sufficient condition that a unit-speed smooth trajectory lies in 

a plane, would be determined. 

 

   Theorem 2.1. Let 𝛽 be a unit-speed smooth trajectory in (𝑅3, 𝜎)  with κ > 0. Then 𝛽 is a plane smooth 

trajectory if and only if     𝜏 = 0. 

 

Proof. Suppose 𝛽 is a plane smooth trajectory. Then by the above considerations, there exist points 𝑝 

and 𝑞 such that 𝜎(𝛽(𝑠) − 𝑝, 𝑞) = 0 for all 𝑠. Differentiation yields 𝜎(𝛽′(𝑠), 𝑞) = 𝜎(𝛽′′(𝑠), 𝑞) = 0. Thus 𝑞 

is always 𝜎 orthogonal to 𝑇 = 𝛽′ and 𝑁 = κ−1𝛽′′. But 𝐵 is also 𝜎 orthogonal to 𝑇 and 𝑁, so, since 𝐵 has 

unit length,  𝐵 = ±||𝑞||−1 𝑞. Thus 𝐵′ = 0 , and by definition 𝜏 = 0. Conversely, suppose 𝜏 = 0. Thus 𝐵′ =
0; that is, 𝐵 is parallel and may thus be identified with a point of 𝑅3. We assert that 𝛽 lies in the plane 

through 𝛽(0) orthogonal to 𝐵. To prove this, consider the real valued function 𝑓(𝑠) = 𝜎(𝛽(𝑠) − 𝛽(0), 𝐵) 

for all 𝑠. Then 𝑓 ′(𝑠) = 0, but obviously, 𝑓(0) = 0, so 𝑓 is identically zero. Thus 𝛽 lies entirely in this plane 

orthogonal to the (parallel) binormal of  𝛽.   

 

A circle of center 𝑝 ∈ 𝑅3 and radius 𝑎 ≥ 0 in (𝑅3, 𝜎) consist of all is the set of all 𝑤 ∈ 𝑅3 such that  (𝑤 −
𝑝, 𝑤 − 𝑝) = 𝑎2. Let 𝑖,̅ 𝑗 ̅ ∈ 𝑅3 are two 𝜎 orthonormal vectors. The equation of a circle of radius 𝑎  

in (𝑅3, 𝜎)  is given by 𝛽(𝑠) =  𝑎𝑐𝑜𝑠(𝑎−1𝑠)𝑖̅ + 𝑎𝑠𝑖𝑛(𝑎−1𝑠)𝑗.̅  Then 𝛽′′(𝑠) =  −𝑎−1𝑐𝑜𝑠(𝑎−1𝑠)𝑖̅ −
𝑎−1𝑠𝑖𝑛(𝑎−1𝑠)𝑗,̅ κ(𝑠) = √𝜎( 𝛽′′(𝑠),  𝛽′′(𝑠)) = 𝑎−1.  Therefore, 𝛽 is a unit-speed smooth trajectory with κ =
𝑎−1, 𝑁(𝑠) =  𝑐𝑜𝑠(𝑎−1𝑠)𝑖̅ − 𝑠𝑖𝑛(𝑎−1𝑠)𝑗 ̅and a circle of radius a has curvature 𝑎−1.  

 

Furthermore, the formula given there for the principal normal shows that for a circle, 𝑁 always points 

toward its center. This suggests how to prove the following converse. 

 

Theorem 2.2. If 𝛽 is a unit-speed smooth trajectory with constant curvature κ > 0 and torsion zero, then 

𝛽 is part of a circle in (𝑅3, 𝜎) of radius κ−1. 

 

Proof. Since 𝜏 = 0, 𝛽 is a plane smooth trajectory. What we must now show is that every point of 𝛽 is at 

distance κ−1 from some fixed point, which will be the center of the circle. Consider the smooth trajectory 

= 𝛽 + κ−1𝑁. Using the hypothesis on 𝛽, and a Frenet-Serret formula in (𝑅3, 𝜎), we find 𝛾 ′ = 𝛽′ +
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κ−1𝑁 ′ = 𝑇 + κ−1(−κ𝑇 + 𝜏𝐵) = 0. Hence the smooth trajectory 𝛾 is constant; that is, 𝛽(𝑠) + κ−1𝑁(𝑠) 

has the same value, say 𝑐, for all 𝑠.  But the distance from 𝑐 to 𝛽(𝑠) is  

𝑑(𝑐, 𝛽(𝑠)) = ||𝑐 − 𝛽(𝑠)|| = √𝜎(𝑐 − 𝛽(𝑠), 𝑐 − 𝛽(𝑠)) = √𝜎(κ−1𝑁(𝑠), κ−1𝑁(𝑠)) = κ−1. 

  

In principle, every geometric problem about smooth trajectories in (𝑅3, 𝜎) can be solved by means of the 

Frenet-Serret formulas corresponding to 𝜎. In simple cases it may be just enough to record the data of 

the problem in convenient form, differentiate, and use the Frenet-Serret formulas in (𝑅3, 𝜎). For 

example, suppose 𝛽 is a unit-speed smooth trajectory that lies entirely in the sphere 𝑆 of radius 

𝑎 centered at 𝑐 ∈ 𝑅3.  

 

To stay in the sphere, 𝛽 must smooth trajectory; in fact it is a reasonable guess that the minimum 

possible curvature occurs when 𝛽 is on a great circle of 𝑆. Such a circle has radius 𝑎, so we conjecture 

that:  

 

Theorem 2.3.  A unit-speed spherical smooth trajectory β has curvature κ ≥ 𝑎−1, where 𝑎 is the  radius 

of its sphere in (𝑅3, 𝜎). 

 

Proof. Since every point of has distance 𝑎 from c, the center of the sphere, we have 𝜎(β − c, β − c) = 𝑎2. 

Differentiation yields 𝜎(β − c, 𝛽′) = 0, that is, 𝜎(𝛽 − 𝑐, 𝑇) = 0. Another differentiation gives 𝜎(𝛽′, 𝑇) +
𝜎(𝛽 − 𝑐, 𝑇 ′) = 0, and by using a Frenet-Serret formula we get 𝜎(𝑇, 𝑇) + 𝜎(𝛽 − 𝑐, κ𝑁) = 0; hence κ𝜎(𝛽 −
𝑐, 𝑁) ) = −1. By the Schwarz inequality, κ−1 = |𝜎(𝛽 − 𝑐, 𝑁)| ≤ ||𝛽 − 𝑐|| ∙ ||𝑁|| = 𝑎  and we obtain the 

required result.  

  

Continuation of this procedure leads to a necessary and sufficient condition expressed in terms of 

curvature and torsion for a smooth trajectory to be spherical, that is, lie on some sphere in (𝑅3, 𝜎). 

 

Theorem 2.4.  Let 𝛽 be a unit-speed smooth trajectory with κ > 0, 𝜏 ≠ 0 in (𝑅3, 𝜎). (a) If β lies on a 

sphere of center 𝑐 and radius 𝑎, then β − c = −κ−1𝑁 − (κ−1)′𝜏−1𝐵 , and 𝑎2 = κ−2 + [(κ
−1)′𝜏−1]2.  

Conversely, if 𝑎2 = κ−2 + [(κ−1)′𝜏−1]2 and (κ−1)′ ≠ 0, then β lies on a sphere of radius 𝑎. 

 

Proof. As in the proof of Theorem 2.3, 𝜎(𝛽 − 𝑐, 𝑇) = 0, 𝜎(𝛽 − 𝑐, 𝑁) = −κ−1. Again differentiation using 

Frenet-Serret formulas yields 𝜎(𝛽′, 𝑁) + 𝜎(𝛽 − 𝑐, −κ𝑇 + 𝜏𝐵) = −(κ
−1)′, or 𝜎(𝛽 − 𝑐, 𝐵) = −(κ−1)′𝜏−1. 

Since β − c = 𝜎(β − c, 𝑇)𝑇 + 𝜎(β − c, 𝑁)𝑁 + 𝜎(β − c, 𝐵)𝐵,  we have β − c = −κ−1𝑁 − (κ−1)′𝜏−1𝐵.  But 

𝑁  and and 𝐵 are 𝜎 orthonormal, so  

𝑎2 = ||𝛽 − 𝑐||
2

= ||−κ−1𝑁 − (κ−1)′𝜏−1𝐵||
2

= 𝜎(−κ−1𝑁 − (κ−1)′𝜏−1𝐵, −κ−1𝑁 − (κ−1)′𝜏−1𝐵) = κ−2 +

[(κ−1)′𝜏−1]2. 

Conversely, let 𝑎2 = κ−2 + [(κ−1)′𝜏−1]2 and (κ−1)′ ≠ 0, differentiation yields κ−1𝜏 + 𝜏−1(κ−1)′′ +
(κ−1)′(𝜏−1)′ = 0. Define 𝛾 = β + κ−1𝑁 + (κ−1)′𝜏−1𝐵, a computation using preceding results yields 𝛾 ′ =
0, therefore β + κ−1𝑁 + (κ−1)′𝜏−1𝐵 = 𝑐 for some constant 𝑐 ∈ 𝑅3. 
 

Theorem 2.5. If 𝛿 be the spherical image of the unit-speed smooth trajectory 𝛽 in (𝑅3, 𝜎), then 𝜅𝛿 ≥ 𝜅𝛽. 

 

Proof. The spherical image of a unit-speed smooth trajectory 𝛽 in (𝑅3, 𝜎) is the smooth trajectory 𝛿 =
𝑇𝛽 = 𝛽′ with the same Euclidean coordinates. Thus 𝛿, lies on the unit sphere 𝑆, and the motion of  𝛿 

represents the turning of 𝛽.  The equation of 𝛿 implies that 𝑇𝛿 = 𝛿 ′ = 𝑇𝛽
′ = 𝜅𝛽𝑁𝛽, so the speed of 𝛿 is 

equal to the curvature of 𝛽, i.e., 𝑣𝛿 = 𝜅𝛽. Moreover,𝑇𝛿
′ = 𝛿 ′′ = 𝑇𝛽

′′ = (𝜅𝛽𝑁𝛽)′ = 𝜅𝛽
′ 𝑁𝛽 + 𝜅𝛽𝑁𝛽

′ = 𝜅𝛽
′ 𝑁𝛽 +

𝜅𝛽(−𝜅𝛽𝑇𝛽 + 𝜏𝛽𝐵𝛽) = −𝜅𝛽
2𝑇𝛽 + 𝜅𝛽

′ 𝑁𝛽 + 𝜅𝛽𝜏𝛽𝐵𝛽. So 𝑇𝛿
′ = 𝜅𝛿𝑣𝛿𝑁𝛿 implies that 𝜅𝛽

4 + (𝜅𝛽
′ )2 + 𝜅𝛽

2𝜏𝛽
2 =

𝜅𝛿
2𝜅𝛽

2, and 𝜅𝛿 ≥ 𝜅𝛽. 

 

Definition 2.6. A unit-speed smooth trajectory 𝛽 in (𝑅3, 𝜎) is a helix provided the unit tangent 𝑇 of 𝛽 has 

non zero constant value with some fixed 𝜎 unit vector. 

 

Theorem 2.7. A unit-speed smooth trajectory 𝛽 with 𝜅 > 0 in (𝑅3, 𝜎) is a helix if and only if the ratio κ−1𝜏 

is non zero constant.  

 

Proof. It suffices to consider the case where 𝛼 has unit speed. If 𝛼 is a helix with 𝜎(𝑇(𝑠), 𝑈) = 𝑐 ≠ 0, 

then 0 = 𝜎(𝑇 ′(𝑠), 𝑈) = 𝑘𝜎(𝑁, 𝑈). Since κ > 0, we conclude that 𝜎(𝑁(𝑠), 𝑈) = 0. Thus for each 𝑠, 𝑈 lies 

in the plane determined by T(s) and B(s). Orthonormal expansion yields 𝑈 = 𝜎(𝑈, 𝑇)𝑇 + 𝜎(𝑈, 𝐵)𝐵 and 

𝜎(𝑈, 𝑇)2 + 𝜎(𝑈, 𝐵)2 = 1, so 𝜎(𝑈, 𝐵) is also constant. By differentiating and applying Frenet-Serret 

formulas in (𝑅3, 𝜎), we obtain 0 = 𝜎(𝑈, 𝑇)𝑇 ′ + 𝜎(𝑈, 𝐵)𝐵′ = (κ𝜎(𝑈, 𝑇) − 𝜏𝜎(𝑈, 𝐵))𝑁. Hence κ𝜎(𝑈, 𝑇) =
𝜏𝜎(𝑈, 𝐵), so that κ−1𝜏 has non zero constant  value 𝜎(𝑈, 𝐵)−1𝜎(𝑈, 𝑇). Conversely, suppose that κ−1𝜏 is 

non zero constant. If 𝑉 = κ−1𝜏 𝑇 + 𝐵 we find ||𝑉|| = √1 + κ−2𝜏2 > 1 and  𝑉 ′ = κ−1𝜏 𝑇 ′ + 𝐵′ = 0. This 

parallel vector field V determines a unit vector 𝑈 = ||𝑉||−1𝑉,  such that 𝜎(𝑈, 𝑇) = 𝜎(||𝑉||−1𝑉, 𝑇) =
||𝑉||−1𝜎(𝑉, 𝑇)=(κ

−1𝜏)√(1 + κ−2𝜏2)−1, so 𝛽 is a helix.  
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GEOMETRY OF THE GENERAL INNER PRODUCT SPACES  
 

We recall some familiar features of plane geometry. First of all, two triangles are congruent if there is a 

rigid motion of the plane that carries one triangle exactly onto the other. Corresponding angles of 

congruent triangles are equal, corresponding sides have the same length; the areas enclosed are equal, 

and so on.  Indeed, any geometric property of a given triangle is automatically shared by every congruent 

triangle.  

Conversely, there are a number of simple ways in which one can decide whether two given triangles are 

congruent, for example, if for each the same three numbers occur as lengths of sides. In this section we 

shall investigate the isometries of the inner product space, and see how these remarks about triangles 

can be extended to other geometric objects in (𝑅3, 𝜎).  

 

The inner product of points 𝑝 = (𝑝1, 𝑝2, 𝑝3) and 𝑞 = (𝑞1, 𝑞2, 𝑞3) in 𝑅3 is a number 𝜎(𝑝, 𝑞) with the 

following three properties: (1) Bilinearity: 𝜎(𝑎𝑝 + 𝑏𝑞, 𝑟) = 𝑎 𝜎(𝑝, 𝑟) + 𝑏𝜎(𝑞, 𝑟), 𝜎(𝑟, 𝑎𝑝 + 𝑏𝑞) =
𝑎 𝜎(𝑟, 𝑝) + 𝑏𝜎(𝑟, 𝑞), for 𝑝, 𝑞 and 𝑟 are arbitrary points of 𝑅3, and 𝑎 and 𝑏 are number (2) Symmetry:  

𝜎(𝑝, 𝑞) = (𝑞, 𝑝), for arbitrary points   𝑝, 𝑞 of  𝑅3(3) Positive definiteness: 𝜎(𝑝, 𝑝)  ≥ 0, and 𝜎(𝑝, 𝑝)  = 0  if 
and only if 𝑝 = 0. 

 

The norm of a point 𝑝 ∈ 𝑅3 is the number ||𝑝|| = √𝜎(𝑝, 𝑝). The norm is thus a real-valued function on 

𝑅3, it has the fundamental properties ||𝑝 + 𝑞|| ≤ ||𝑝|| + ||𝑞|| and ||𝑎𝑝||= |𝑎| ||𝑝|| where |𝑎|  is the 

absolute value of the number 𝑎. The distance between two points 𝑝 and 𝑞 in 𝑅3 is defined by 𝑑(𝑝, 𝑞) =
||𝑝 − 𝑞|| [2].  

 

An isometry of the inner product space is a mapping that preserves the distance 𝑑 between points, i.e., 

a mapping 𝐹: 𝑅3 → 𝑅3 such that 𝑑(𝑝, 𝑞) = 𝑑(𝐹(𝑝), 𝐹(𝑞)) for all points 𝑝, 𝑞 in 𝑅3. An orthogonal 

transformation of 𝑅3, is a linear transformation 𝐶: 𝑅3 → 𝑅3 that preserves inner products in the sense 

that 𝜎(𝐶(𝑝), 𝐶(𝑞)) = 𝜎(𝑝, 𝑞) for all 𝑝, 𝑞 in 𝑅3. It can be seen easily that an orthogonal transformation is 

an isometry of 𝑅3. Moreover, If 𝐹 is an isometry of 𝑅3 such that 𝐹(0) = 0, then 𝐹 is an orthogonal 

transformation.  

 

If 𝐹 is an isometry of 𝑅3, then there exists a unique translation 𝑇 and a unique orthogonal 

transformation 𝐶 such that 𝐹 = 𝑇𝐶 [3]. So, if 𝑇 is translation by 𝑎 = (𝑎1, 𝑎2, 𝑎3), then 𝑞 = 𝐹(𝑝) means  

𝑞 = 𝑎 + 𝐶(𝑝), where by a standard result of linear algebra, a linear transformation of 𝐶: 𝑅3 → 𝑅3 is 

orthogonal if and only if its matrix, [𝑐𝑖𝑗], is (𝜎) orthogonal with respect to a 𝜎 orthonormal basis [4]. 

 

Theorem 3.1. Let 𝐹: 𝑅3 → 𝑅3 be an isometry in (𝑅3, 𝜎) with orthogonal part 𝐶. If 𝛽 = 𝐹   ⃘𝛼, then 𝛽′ = 𝐶𝛼 ′, 

𝛽′′ = 𝐶𝛼 ′′, 𝛽′′′ = 𝐶𝛼 ′′′. Moreover, 𝛼 ′, 𝛼 ′′, 𝛼 ′′′ and 𝛽′, 𝛽′′, 𝛽′′′ are simultaneously linearly dependent. 

 

Proof. If 𝑇 is translation by 𝑎, then 𝛽(𝑡) = 𝑎 + (𝐶   ⃘𝛼)(𝑡), now linearity of 𝐶 and chain rule of 

differentiation [5] implies the theorem. The proof of the rest of the theorem is straightforward. 

 

Theorem 3.2. Let 𝐹: 𝑅3 → 𝑅3 be an isometry and 𝛽 be a unit-speed smooth trajectory in (𝑅3, 𝜎), then  

𝛽̅ = 𝐹𝛽 is a unit-speed smooth trajectory in (𝑅3, 𝜎). 

 

Proof. Let 𝐶 be be the 𝜎 orthogonal part of 𝐹. Then according to theorem 3.1,  𝜎(𝛽̅′, 𝛽̅′) = 𝜎(𝐶𝛽′, 𝐶𝛽′) =
𝜎(𝛽′, 𝛽′) = 1. 

 

Theorem 3.3. Let 𝐹: 𝑅3 → 𝑅3 be an isometry with orthogonal part 𝐶. Let 𝛽 be a unit-speed smooth 

trajectory in (𝑅3, 𝜎) with positive curvature, and let 𝛾 = 𝐹𝛽. Then κ𝛾 = κ𝛽 , 𝜏𝛾 = 𝜏𝛽 , 𝑇𝛾 = 𝐶𝑇𝛽 , 𝑁𝛾 =

𝐶𝑁𝛽 , 𝐵𝛾 = 𝐶𝐵𝛽.   

 

Proof. Theorem 3.1 asserts that 𝑇𝛾 = 𝛾 ′ = 𝐶𝛽′ = 𝐶𝑇𝛽. Therefore κ𝛾 = ||𝑇𝛾
′|| = ||𝛾 ′′|| = || 𝐶𝛽′′|| =

|| 𝐶 𝑇𝛽
′|| = ||𝐶(κ𝛽𝑁𝛽)|| = κ𝛽 ||𝐶𝑁𝛽|| = κ𝛽. For finding 𝐵𝛾, as in [1] let 𝐵̅𝛾 = 𝛾 ′′′ − 𝜎(𝛾 ′, 𝛾 ′′′)𝛾 ′ −

κ𝛾
−2𝜎(𝛾 ′′, 𝛾 ′′′)𝛾 ′′, then a computation using Theorem 3.1 yields   

𝐵𝛾
̅̅ ̅ =  𝐶 𝛽′′′ − 𝜎(𝐶𝛽′, 𝐶𝛽′′′)𝐶𝛽′ − κ𝛾

−2𝜎(𝐶𝛽′′, 𝐶𝛽′′′)𝐶𝛽′′ = 𝐶(𝛽′′′ − 𝜎(𝛽′, 𝛽′′′)𝛽′ − κ𝛽
−2𝜎(𝛽′′, 𝛽′′′)𝛽′′) = 𝐶𝐵𝛽

̅̅̅̅  . 

Thus  𝐵𝛾 = ||𝐵𝛾
̅̅ ̅||−1𝐵𝛾

̅̅ ̅ = ||𝐶𝐵𝛽
̅̅̅̅  ||−1𝐶𝐵𝛽

̅̅̅̅  = 𝐶𝐵𝛽. We can now find the torsion function 𝜏𝛾 of the smooth 

trajectory 𝛾 as defined  in [1] to be the real-valued map such that 𝐵𝛾
′ = −𝜏𝛾𝑁𝛾. As a result 𝐶(−𝜏𝛽𝑁𝛽) =

𝐶𝐵𝛽
′ = (𝐶𝐵𝛽)′ = 𝐵𝛾

′ = −𝜏𝛾𝑁𝛾 = −𝜏𝛾𝐶𝑁𝛽 = 𝐶(−𝜏𝛾𝑁𝛽) and so 𝜏𝛾 = 𝜏𝛽.  

 

Smooth trajectories whose congruence is established by a translation are said to be parallel. Thus, 

smooth trajectories 𝛼, 𝛽: 𝐼 → 𝑅3 are parallel if and only if there is a point 𝑝 in 𝑅3 such that 𝛽(𝑠) =
𝛼(𝑠) + 𝑝 for all 𝑠 in 𝐼. 

 

Remark 3.4. An argument, using elementary calculus shows that two smooth trajectories 𝛼, 𝛽: 𝐼 → 𝑅3 

are parallel if their velocity vectors 𝛼 ′(𝑠) and  𝛽′(𝑠)  are parallel for each 𝑠 in 𝐼. In this case, if 𝛼 ′(𝑠0) =
𝛽′(𝑠0) for some 𝑠0 in 𝐼, then 𝛼 = 𝛽. 
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Definition 3.5. Two smooth trajectories 𝛼, 𝛽: 𝐼 → 𝑅3are congruent provided there exists an isometry 

𝐹: 𝑅3 → 𝑅3 such that β = 𝐹α.  

 

The following theorem is an important converse of Theorem 3.3. The proof is parallel to a similar 

theorem in (𝑅3, <, >) [6]. 

 

Theorem 3.6. If 𝛼, 𝛽: 𝐼 → 𝑅3are unit-speed smooth trajectories with same torsions and same positive 

curvatures in (𝑅3, 𝜎), then 𝛼 and 𝛽 are congruent. 

 

Proof. First of all, note that if two frames on 𝑅3, say 𝑢1, 𝑢2, 𝑢3 at the point 𝑝 and 𝑣1, 𝑣2, 𝑣3 at the point 𝑞, 

there exists a unique isometry 𝐹: 𝑅3 → 𝑅3with orthogonal part 𝐶 such that 𝐶(𝑢𝑖) = 𝑣𝑖 for 𝑖 = 1,2,3 [4].  

Then consider a number, say 𝑡0, in the interval 𝐼. Let 𝐹 be the isometry that carries the Frenet-Serret 

frame 𝑇𝛼(𝑡0), 𝑁𝛼(𝑡0), 𝐵𝛼(𝑡0) of 𝛼 at 𝛼(𝑡0) to the Frenet-Serret frame 𝑇𝛽(𝑡0), 𝑁𝛽(𝑡0), 𝐵𝛽(𝑡0) of 𝛽 at 𝛽(𝑡0). 

Denote the Frenet-Serret apparatus of  α̅ = 𝐹α  by κ̅, 𝜏̅, 𝑇̅, 𝑁̅, 𝐵̅, then it follows immediately from Theorem 

3.3 and the above considerations that α̅(𝑡0) = 𝛽(𝑡0),  𝑇̅(𝑡0) = 𝑇𝛽(𝑡0), 𝑁̅(𝑡0) = 𝑁𝛽(𝑡0), 𝐵̅(𝑡0) =

𝑇𝛽(𝑡0),  κ̅ = κ𝛽 , 𝜏̅ = 𝜏𝛽 . Now since α̅(𝑡0) =  𝛽(𝑡0), it will follow that 𝐹  ⃘α = 𝛽. On the interval 𝐼, consider 

the real-valued function 𝑓 = 𝜎( 𝑇̅, 𝑇𝛽) + 𝜎( 𝑁̅̅̅, 𝑁𝛽) + 𝜎( 𝐵̅, 𝐵𝛽). Since these are unit vector fields, the 

Schwarz inequality shows that 𝑓 ≤ 3. Above considerations also imply that 𝑓(0) = 3. Now consider 𝑓 , =

𝜎( 𝑇̅ ′, 𝑇𝛽) + 𝜎( 𝑇̅, 𝑇𝛽
′) + 𝜎( 𝑁̅̅̅ ′, 𝑁𝛽) + 𝜎( 𝑁̅̅̅, 𝑁𝛽

′) + 𝜎( 𝐵̅′, 𝐵𝛽) + 𝜎( 𝐵̅, 𝐵𝛽
′), Substitute the Frenet-Serret 

formulas in (𝑅3, 𝜎), in this expression and use the equations κ̅ = κ𝛽 , 𝜏̅ = 𝜏𝛽 implies that  

𝑓 , = κ̅𝜎(𝑁̅, 𝑇𝛽) + κ𝛽𝜎( 𝑇̅, 𝑁𝛽) − κ̅𝜎(𝑇̅, 𝑁𝛽) + 𝜏̅𝜎( 𝐵̅, 𝑁𝛽)−κ𝛽𝜎( 𝑁̅̅̅, 𝑇𝛽) + 𝜏𝛽𝜎( 𝑁̅̅̅, 𝐵𝛽) − 𝜏̅𝜎(𝑁̅, 𝐵𝛽) −

𝜏𝛽𝜎( 𝐵̅, 𝑁𝛽) = 0. 

Thus 𝑓 = 3 and therefore 𝜎( 𝑇̅, 𝑇𝛽) = 1. This completes the proof.  

 

CONFLICT OF INTEREST 
There is no conflict of interest. 

 

ACKNOWLEDGEMENTS  
None 

 
FINANCIAL DISCLOSURE 
None 

 

REFERENCES 
 

[1] Parsian A. [2016] Geometrization of the 

trajectory of the motion of a particle in three 

dimensional space with the general inner 

product, Proceeding of the 3rd international 

conference on research science and technology, 

Berlin, Germany. 

[2] Marsden J, Tromba A. [2011] Vector calculus. 

Freeman, W. H. & Company. 

[3] Beckman FS, Quarles DA. [1953] On isometries 

of Euclidean spaces, Proceedings of the 

American Mathematical Society 4: 810-815.  

[4] Beezer RE. [2010] A first course in linear 

algebra, University of Puget Sound.  

[5] Spivak M. [1965] Calculus on manifolds, W. A. 

Benjamin, Inc. 

[6] O’neil B. [2006] Elementary differential 

geometry, Academic Press 

http://www.iioab.org/
http://www.ams.org/journals/proc/1953-004-05/S0002-9939-1953-0058193-5/S0002-9939-1953-0058193-5.pdf
http://www.ams.org/journals/proc/1953-004-05/S0002-9939-1953-0058193-5/S0002-9939-1953-0058193-5.pdf

