ARTICLE

PREPARATION AND STRUCTURAL PROPERTIES OF POLYANILINE/COTIO3 NANOCOMPOSITES

F Ghanbary*, S Majidi, K Bayzidi, S Khanahmadzadeh

Department of Chemistry, Mahabad Branch, Islamic Azad University, Mahabad, IRAN

ABSTRACT

In this study, poly aniline-cobalt titanate nano composites (NCs) with two content loadings of CoTiO3 (10 and 20 wt%) were prepared successfully. Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray diffraction (EDX), diffuse reflectance spectroscopy (DRS), and zeta potential were used to characterize the structure and properties of the obtained NCs. The results indicated that CoTiO3 NPs with an average particle size of 47 nm were distributed in the poly aniline (PANI) matrix; DRS analysis indicated the presence of semiconducting behavior in the NCs. The zeta potential indicated that the fabricated PANI/CoTiO3NCs with 10 and 20 wt% of CoTiO3NPs were increased with 83% and 93%, respectively.

INTRODUCTION

KEY WORDS Nano composite, CoTiO3, XRD, EDX, DRS, zeta potential

Published: 10 October 2016

*Corresponding Author Email: Ghanbary83@yahoo.com As a typical conducting polymer, PANI is one of the most promising electricity-conducting polymers due to its unique electrical and electrochemical properties, easy polymerization, high environmental stability, and the low cost of the monomer [1-3]. The attention PANI has received is attributable to these characteristics and its widespread use in microelectronic devices, diodes, light weight batteries, sensors, and super capacitors. PANI is also used for microwave absorption, inhibition of corrosion, and other related applications [4-8]. The properties of PANI can be tailored by changing its oxidation states and dopants or through blending it with other organic, polymeric, or inorganic nano-sized semiconducting particles to obtain materials with synergistic advantage. Various composites of PANI with inorganic NPs such as CeO2, TiO2, ZrO2, Fe2O3, and Fe3O4 have been reported. Metal-containing titanium-based oxides such as MTiO3 (M: Ni, Pb, Fe, Co, Cu, and Zn) are universally known as inorganic functional materials with broad applications. These oxides can be used in a variety of industrial applications including as electrodes of solid oxide fuel cells, metal-air barriers, gas sensors, high-performance catalysts, and ferroelectric random access memory [9–20].

The interest of researchers in CoTiO3 has increased in recent decades due to its physiochemical properties, which permit its use in applications such as pigments and magnetic recording media, as a gas sensor for alcohol content, and as a humidity sensor [21] and catalyst [22]. Oxide-based magnetic nanoparticles have been investigated by many researchers because of their interesting magnetic properties, including (among others) super-paramagnetic physical properties (mechanical, thermal, etc), which allow polymers to be improved by adding inorganic materials to polymer matrixes; relaxation phenomena; the surface effect caused by their canted spin structure; and magneto-electrical transport. They also have immense potential for applications in the areas of high-density data storage, ferro fluids, magnetic resonance imaging, color processing, and magnetic refrigeration [23]. Super paramagnetic behavior has often been observed in magnetic nanoparticles of dimensions of a few nanometers [24]. In some previous studies, the critical size was estimated to be approximately 30 nm in diameter for a spherical sample of common ferromagnetic materials.

In this study, PANI/CoTiO3 NCs with two (10, 20 wt%) content loadings of CoTiO3 were prepared, and the procedure and structural characterization of all PANI/CoTiO3 NC phases have been investigated using Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray diffraction (EDX), diffuse reflectance spectroscopy (DRS), and zeta potential.

MATERIALS AND METHODS

Cobalt acetate, tetra-n-butyl titanate, stearic acid, potassium iodate, and sulfuric acid were used in the experiments (Merck). The composition of the sample was estimated using EDX attached to a scanning electron microscope at an acceleration voltage of 25 kV (KYKY Model EM 3200; Madell Technology Corporation, Ontario, California, USA). The FTIR spectrum was recorded with a PerkinElmer (Waltham, Massachusetts, USA) Spectrum RX1 using a KBr pellet. The XRD patterns of the powders were recorded on a Seifert Technologies (Massillon, Ohio, USA) diffracto meter (Model PTS 3003) using Cu Ka radiation (λ =0.15418 nm) in the range 20=20° to 70° to examine the crystallization and structural development of the PANI/CoTiO3 nano composite. The SEM pictures were recorded with the KYKY Model EM 3200 electron microscope at the previously noted accelerating voltage. DRS patterns of the powders were recorded on a Model Scinco S-4100 (Scinco; Seoul, South Korea). Streaming zeta potential measurements were carried out on a Zeta CAD instrument (France).

Synthesis of CoTiO3 nanoparticles

CoTiO3 NPs were prepared through a modified wet-chemistry synthesis method that has been described in the literature [25]. In this procedure, a fixed amount of cobalt acetate was added to the melted stearic acid and dissolved. Stoichiometric tetra-n-butyl titanate was then added to the solution, stirred to form sol, naturally cooled to room temperature, and dried to obtain dried gel. Finally, the gel was calcinated in air at 600°C to obtain CoTiO3 NPs.

Synthesis of PANI/CoTiO3 nano composites

In order to prepare PANI/CoTiO3 NCs, the essential substances for the preparation of PANI were addedFig (1). To prepare PANI, 1 g potassium iodate was added to 100 ml of sulfuric acid (1 M), followed by magnetic mixing to create a uniform solution. After 30 min, the amount of ultra sonicated CoTiO3 NPs required preparing 10 and 20 wt% of PANI/CoTiO3 NCs was added to the stirred aqueous solution. After 20 min, 1-ml fresh distilled aniline monomer was also added. Reactions were carried out for 5 h at room temperature. The obtained product was subsequently dried at temperatures of about 60°C in the oven for 24 h [26]. Finally, PANI/CoTiO3 NCs were obtained after heat-treatment from 60°C to 300°C for 2. As described earlier, the entire procedure and structural characterization of PANI/CoTiO3 NCs phases were investigated using methods including FTIR, XRD, SEM, EDX, DRS, and zeta potential. To overcome this limitation, in this study, poly aniline/CoTiO3 nano composites were prepared by using a sol-gel synthesis process, as shown in [Fig. 1].

Fig.1: Poly aniline/CoTiO3 nano composites preparing.

RESULTS AND DISCUSSION

.....

FTIR analysis

[Fig. 1] shows the FTIR spectra of CoTiO3NPs, pure poly aniline and its NCs with two content loadings (10 and 20 wt%) of CoTiO3NPs. In [Fig. 2(b)], the absorption peaks at 1480 and 1564 cm-1 correspond to the C=C and C=N stretching modes for the benzenoid and quinoid rings [27]. The peak at 1293 cm-1 is related to the C-N stretching vibration of the benzenoid unit; the band at 799 cm-1 is assigned to out-of-plane C-H bending of the aromatic ring [28]; and, finally, the peak at 1168 cm-1 is attributable to C-N stretching of the secondary aromatic amine [29]. A slight shift in the absorption peaks of composite [Fig. 2(c, d)] is observed compared to PANI and may be due to the interaction between PANI and the surface of the Mn TiO3NP. The FTIR spectra of the PANI/CoTiO3NCs, shown in [Fig.1 (c, d)], are almost the same as those of pure PANI. The absorption peaks under the 800 cm-1 are attributed to the vibrations of the Co-0 and Ti-O bands in CoTiO3 NPs [25], a result that indicates the PANI/CoTiO3 NCs have been synthesized successfully and the observed shift indicates the interaction between PANI and CoTiO3 NPs.

XRD study

XRD patterns were recorded to analyze the crystal phases. [Fig. 2] shows the XRD patterns of poly aniline, CoTiO3 NPs, and PANI/CoTiO3 NCs with different loadings of nanoparticles. The obtained XRD patterns of

CoTiO3 powders after heat treatment at 600°C in air for 2 h are shown in Figure 2b. At this temperature, the nano powders displayed sharp and intense peaks, indicating a fine crystalline rhombohedral CoTiO3 phase. All peaks corresponding to the rhombohedral phase matched well with the database in JCPDS (file number: 77-1373). The XRD pattern of PANI [Fig. 2(a)] shows that PANI has a partly crystalline structure; the two broad peaks are observed at 2θ =20.41° and 25.61° [29]. In [Fig. 2(c-d)], the diffraction peaks at 2θ =20° and 25° correspond to PANI, and the prominent peaks at 2θ =33°,36°, and 54° correspond to CoTiO3 nanoparticles. On comparison of XRD patterns of CoTiO3, PANI, and PANI/CoTiO3 composites, it is confirmed that CoTiO3 retained its structure on dispersion in the PANI matrix during the in situ polymerization reaction. The results show that as the CoTiO3 content increases in 10% and 20% weight fractions, the intensity of the CoTiO3 crystalline peaks gradually increases. With doping of the PANI matrix with CoTiO3, the crystal structure of CoTiO3was still stable.

Fig. 1: The FTIR analysis Patterns of the PANI/CoTiO3NCs.

.....

Morphology of samples

The particle size of powders can be calculated by Scherrer's formula $(t=k\lambda/\beta \cos\Theta)$, where t is the average size of the particles, assuming particles are spherical, k=0.9, λ is the wavelength of radiation, β is the full width at half of the maximum of the diffracted peak, and Θ is the angle of diffraction. The particle size was calculated by Scherrer's formula for different calcination temperatures. The crystallite size of the powders calcinated at 600°C was about 47 nm in diameter, respectively.

$$L = \frac{K \times \lambda}{\Delta(2\theta) \times \cos(\theta)},$$

THE HONE LOURNAL

SEM studies

[Fig. 3] shows the SEM of pure CoTiO3 [Fig. 3(a)] and the PANI/CoTiO3 NCs with 10 and 20 wt% of CoTiO3 NPs loading, respectively [Fig. 3(b-c)]. The particles have an agglomerated graining structure. In the SEM of the NCs, with the increase of CoTiO3 content, the agglomeration become more appreciable and displayed connections in some regions. SEM images reveal a homogeneous dispersion of CoTiO3 NPs in the PANI matrix.

Fig. 3: SEM pictures of PANI/CoTiO3 NCs.

EDX elemental analysis

.....

EDX patterns of pure CoTiO3 and the PANI/CoTiO3 NCs with 10 and 20 wt% loadings of CoTiO3 NPs are shown in [Fig. 4(a, b)], respectively. EDX patterns of pure CoTiO3 show separate peaks of cobalt (Co), titanium (Ti), and oxygen; the compositional analysis performed with EDX confirmed that theCoTiO3 nano powders were obtained. The EDX patterns of PANI/CoTiO3NCs with 10 and 20 wt% loadings of CoTiO3NPs show separate peaks for cobalt (Co), titanium (Ti), oxygen, carbon, and nitrogen (N), confirming that the sample has the desired composition with both PANI and CoTiO3 nanoparticles. The results show that the intensity of CoTiO3 crystalline peaks gradually increases as the CoTiO3 content increases in the 10 and 20 wt% fractions; this finding is in agreement with the XRD results.

Fig. 4: The EDX pattern of the PANI/CoTiO3 NCs in Scale Full equal at 1133.

.....

DRS study

The absorption coefficient and optical band gap of a material are two important parameters by which the optical characteristics and its practical applications in various fields are judged. [Fig. 5] shows the DRS of pure CoTiO3 and the PANI/CoTiO3 NCs with 10 and 20 wt% fractions of CoTiO3 NPs loading. In Figure 5a, a sharp absorption peak is observed around 325 nm, indicating the optical band gap attributed to the O2-→Ti4+ charge-transfer interaction [30]. DRS analysis provides information about the semiconducting behavior of the NCs. The value of the direct band gap for PANI/CoTiO3 NCs with 10 and 20 wt% loadings of CoTiO3 NPs using the direct band gap determination came out to be 1.4 and 1.3 eV. As a consequence, calculated Eg values

decrease with increasing CoTiO3 concentration. In the PANI/CoTiO3NCs with 10 and 20 wt% loadings of CoTiO3 NPs, sharp absorption peaks are observed around 360 and 365 nm

Fig. 5: The DRS chart of PANI/CoTiO3 NCs.

.....

Band-Gap analysis

For direct band gap determination, a plot of (α hu) ^2versus hu is presented in [Fig. 6]. Band gap value was obtained by extrapolating the straight portion of the graph on the huaxis at (α hu) ^2=0, as indicated by the solid line in [Fig. 6]. The value of the direct band gap for CoTiO3 was 2.4 eV; the value is about 2.2 eV for CoTiO3 bulk crystal, which originates from the Co₂+ \rightarrow Ti4 + charge-transfer transition [31]. The band gap of nano metric CoTiO3 is higher than that of the bulk crystal, and the energy and shape of the interfacial charge-transfer absorption are expected to change as the size of the particle is reduced to nanometer scale [32–33]; for semiconductors, the energy of the band gap transition increases with decreasing size [34].

Zeta potential measurements

[Fig. 7] shows the zeta potential measurements obtained for pure CoTiO3 [Fig. 7(a)] and the PANI/ CoTiO3 NCs with 10 and 20 wt% loadings of CoTiO3 NPs. Initially, CoTiO3 had an average ζ of 2.27 mV and the PANI/CoTiO3 NCs with 10 and 20 wt% loadings of CoTiO3NPs had an average ζ of 25 and 71 mV, respectively. With respect to [Fig. 7], the fabricated PANI/CoTiO3NCs with 10 and 20 wt% loadings of CoTiO3NPs were increased with 83% and 93%, respectively.

Fig. 7: Shows the zeta potential measurements obtained for pure CoTiO3.

.....

CONCLUSION

In this study, PANI/CoTiO3 NCs with two (10, 20 wt%) content loadings of CoTiO3 were successfully synthesized after heat-treatment from 60°C to 300°C for 2 h. The FTIR study of PANI/CoTiO3 shows the shift of characteristic absorption bands of the composite due to the interaction of PANI/CoTiO3. DRS analysis indicates the semiconducting behavior of the NCs; the zeta potential indicated that the fabricated PANI/CoTiO3 NCs with 10 and 20 wt% loadings of CoTiO3NPs were increased with 83% and 93%, respectively.

CONFLICT OF INTEREST

There is no conflict of interest.

ACKNOWLEDGEMENTS

The authors would like to thank Islamic Azad University of Mahabad branch for financial supports

FINANCIAL DISCLOSURE None

REFERENCES

- Majid K, Awasthi S, Singla ML. [2007] Low temperature sensing capability of poly aniline and Mn304 composite as NTC material. J Sensor Actuators A. 135: 113–118.
- [2] Ansari R, Keivani MB. [2006] Poly aniline conducting electro active polymers thermal and environmental stability studies. E J Chem. 3: 202–217.
- [3] Jiang J, Ai L, Li LC. [2009] Synthesis and magnetic performance of poly aniline/Mn–Zn ferrite nano composites with intrinsic conductivity. J Mater. Sci. 44: 1024–1028.
- [4] Nandi M, Gango padhaya R, Bhaumik A.[2008] Meso porous poly aniline having high conductivity at room temperature. Micropor. Mesopor. Mater. 109: 239–247.
- [5] Zhao C, Xing S, Yu Y, Zhang W, Wang C. [2007] A novel allplastic diode based upon pure poly aniline. Micro electron. 38: 316–320.

- [6] Dalas E, Vitoratos E, Sakkopoulos S, Malkaj P. [2004] Poly aniline/zeolite as a cathode in a novel gel electrolyte primary dry cell. J Power Sources, 128: 319–325.
- [7] Ryu KS, Lee Y, Han KS, Park YJ, Kang MG, Park NG, Chang SH. [2004] Electrochemical super capacitor based on poly aniline doped with lithium salt and active carbon electrodes. Solid State Ionics. 175: 765–768.
- [8] Manigandan S, Jain A, Majumder S, Ganguly S, Kargupta K. [2008] Formation of nano-rods and nano-particles of poly aniline using Langmuir Blodgett technique: performance study for ammonia sensor. Sensor Actuators B. 133: 187– 194.
- [9] Yamamoto O, Takeda Y, Kanno R, Noda M. [1987] Perovs kite-type oxides as oxygen electrodes for high temperature oxide fuel cells. Solid State Ion. 22: 241–246.

- [10] Phani AR, Santucci S. [2001] Structural characterization of nickel titanium oxide synthesized by sol-gel spin-coating technique. Mater. Lett. 50(4): 240–245.
- [11] Fisch R. [1995] Critical behavior of randomly pinned spindensity waves. Phys. Rev. B., 51(17): 11507–11514.
- [12] Shimizu Y, Uemura K, Miura N, Yamzoe N. [1988] Gasdiffusion electrodes for oxygen reduction loaded with large surface area La1-xCaxMO3(M=Co,Mn).Chem. Lett. 67: 1979–1982.
- [13] Harris QJ, Feng Q, Lee YSB, Rigeneau RJ. [1997] Random fields and random anisotropies in the mixed Ising-XY magnet FexCo1-xTiO3.Phys. Rev. Lett. 78: 346–349.
- [14] Taylor DJ, Fleig PF, Page RA. [2002] Characterization of nickel titanate synthesized by sol-gel Processing. Thin Solid Films. 408: 104–110.
- [15] Obayashi H, Sakurai Y, Gejo T. [1976] Perovskite-type oxides as ethanol sensors. J. Solid State Chem. 17: 299– 303.
- [16] Dharmaraj N, Park HC, Kim CK, Kim HY, Lee DR. [2004] Nickel titanate nano fibers by Electro spinning. Mater. Chem. Phys. 87: 5–9.
- [17] Skoglundh M, Lowedalh L, Janson K, Dahl L, Nygren M. [1994] Characterization and catalytic properties of perovskites with nominal compositions La1-xSrxAl1-2yCuyRuyO3.Appl.Catal. B. 3: 259–274.
- [18] Liu H, Wang B, Wang R, Liu X. [2007] Preparation and electric characteristics of gadolinium substitute dbismuthtitanate ferroelectric thin films. Mater. Lett. 61(11–12): 2457–2459.
- [19] Wang DG, Chen CZ, Ma Jd, Liu TH. [2008] Lead-based titanate ferroelectric thin films fabricated by a sol-gel technique. Appl. Surf. Sci. 255(5): 1637–1645.
- [20] Bobby Singh S, Sharmaa HB, Sarmaa HNK, Phanjoubama S. [2008] Influence of crystallization on the spectral features of nano-sized ferroelectric barium strontium titanate (Ba0.7Sr0.3Ti03) thin films. Physica. B: Condens. Matter. 403(17): 2678–2683.
- [21] Chu X, Liu X, Wang G, Meng G. [1999] Preparation and gassensing properties of nano-CoTiO3. Mater. Res. Bull. 34(10-11): 1789-1795.
- [22] Kazuyuki T, Yasuo U, Shuji T, Takashi I, Akifumi U. [1984] Catalyst preparation procedure probed by EXAFS

spectroscopy: 2. Cobalt on titania. J Am. Chem. Soc.106: 5172-5178.

- [23] Sahoo Y, Cheon M, Wang S, Luo H, Furlani EP, Prasad PN. [2004] Field-directed self-assembly of magnetic nano particles. J Phys Chem B. 108(11): 3380–3383.
- [24] Enhessari M, Parviz A, Ozaee K, Karamali E. [2010] Magnetic properties and heat capacity of CoTiO3 nano powders prepared by stearic acid gel method. J Exp Nano sci. 5(1): 61-68.
- [25] Enhessari M, Parviz A, Karamali E, Ozaee K. [2012] Synthesis, characterisation and optical properties of MnTiO3 nano powders. J Exp. Nano sci. 7(3): 327-335.
- [26] Mansour MS, Ossman ME, Farag HA. [2011] Removal of Cd (II) ion from waste water by adsorption onto poly aniline coated on sawdust. Desalination. 272: 301-305.
- [27] Zhu J, Wei S, Zhang L, Mao Y, Ryu J, Karki AB, Young DP, Guo Z. [2011] Poly aniline tungsten oxide meta composites with tunable electronic properties. J Mater. Chem. 21: 342-348.
- [28] Gu H, Huang Y, Zhang X, Wang Q, Zhu J, Shao L, Haldolaarachchige N, Young DP, Wei S, Guo Z. [2012] Magneto resistive poly aniline-magnetite nano composites with negative di electrical properties. Polymer. 53: 801-809.
- [29] Umarea SS, Shambharkara BH, Ningthoujam RS. [2010] Synthesis and characterization of PANI- Fe304 nanocomposite: Electrical conductivity, magnetic, electrochemical studies. Synth. Met., 160: 1815-1821.
- [30] Zhou GW, Chen DR, Xu GY. [2005] Synthesis and characterization of ilmenite-type CoTiO3 Nano materials. ActaChim. Sinica. 20: 1971–1920.
- [31] Kao KH, Chuang SH, Wu WC, et al. [2008] X-ray photoelectron spectroscopy energy band alignment of spinon CoTiO3 high-k dielectric prepared by sol-gel spin coating method. Applied Physics Letters. 93: 092907 -092907-2.
- [32] Creutz C, Brunschwig BS, Sutin N. [2004] Electron transfer from the molecular to the nano scale, in Comprehensive Coordination Chemistry II.J McLeverty and T. J Meyer, eds. 7: 731–777.
- [33] Jortner J. [1992] Cluster size effects. Z. Phys. D At. Mol. Clusters. 24(3): 247–275.
- [34] Hagfeldt A, Gratzel M. [1995] Light-induced redox reactions in nano crystalline systems. Chem. Rev. 95(1):49–68.