
 SPECIAL ISSUE: COMPUTER SCIENCE 
 

 

 

www.iioab.org | Mukherjee. 2018 | IIOABJ | Vol. 9 | 2 | 54-60 | 

 

54 

KEY WORDS 

Gatling; Vaadin; 

Load Testing; Scala 

ARTICLE 

GATLING AND VAADIN INTEGRATION IN CENTOS 

Sukhendu Mukherjee* 

Tiny Planet Inc. 5551 Orangethorpe Ave, Suite A, La Palma, CA - 90623, USA 

 

ABSTRACT 

 
This article describes how we can integrate Gatling with Vaadin. Gatling helps us to do load testing for any web application. We can use 

Gatling for Vaadin application for load testing. Gatling is a Scala-based load testing tool developed by the Gatling Corp. The tool itself is open 

source and can be found on GitHub. On top of the open part, an enterprise edition exists. 

. 

INTRODUCTION 
 

Load tests in Gatling [1-3] are written in Scala [4]. The API for writing those tests makes heavy use of the 

builder pattern and fluent interfaces. This might be a question of personal preferences but in my opinion 

this approach fits quite well. Especially, because no detailed Scala knowledge is necessary in order to 

write Gatling load tests. Therefore, Java developers should not be afraid of using Gatling. 

 

A single load test in Gatling is called a scenario. Roughly, a scenario can be divided into three parts: 

 

General configuration [1] (protocol, server address, encoding …) 

Steps to execute (open webpage, click this, enter that …) 

Scenario configuration (no. of total users, users over time …) 

 

The different parts will be explained in more detail in the following sections. But the possibilities for 

reusing different parts across tests should already be obvious. 

 

Gatling currently provides support for HTTP protocols (including WebSocket and SSE) and JMS. Extending 

this functionality will be part of the next blog post. For the following example, we will rely on HTTP requests 

because they are the easiest to understand. 
 

MATERIALS AND METHODS  
 

As a part of load testing we took our existing vaadin application [5] and followed below steps to integrate 

Gatling with Vaadin [5,6]. 

 

Install gatling 

1. Download Gating bundle from Install Gatling url - https://gatling.io/download/ 

2. Just unzip the downloaded bundle to a folder of your choice. 

3. Configure the proper encoding in the gatling. conf file 

 

Start the recorder and configure it like in the screen shot 

Use this $GATLING_HOME/bin/recorder.sh to start recorder. 

. Once launched, the following GUI lets you configure how requests and responses will be recorded. 

          Set it up with the following options:  

 In output folder we need to define the path where Gatling test cases will be generated. 

 package name where scala file will be created under the defined package name. 

 Simulation file name  

 Follow Redirects? checked  

 Automatic Referers? checked  

 Black list first filter strategy selected  

 .*\.css, .*\.js and .*\.ico in the black list filters  

Configure the proxy in your browser 
 

 We need to configure [Fig-1] the proxy server to record the desired application activity in browser [2]. 

Please find below the proxy configuration screenshot. We need to make sure proxy setting port number 

and Gatling listening port should be same. 

 

ISSN: 0976-3104 

 

Received: 4 April 2018 

Accepted: 19 April 2018 

Published: 22 April 2018 

*Corresponding Author 

Email: 

sukhendu.mukherjee@tinyplaneti

nc.com 

Tel.: +1 214 862-6575 

https://github.com/gatling/gatling


 SPECIAL ISSUE: COMPUTER SCIENCE 
 

 

 

www.iioab.org | Mukherjee. 2018 | IIOABJ | Vol. 9 | 2 | 54-60 | 

 

55 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1:  Configure the proxy in browser 

…………………………………………………………………………………………………. 

 

Start recording 
 

Start the recording option from Gatling Recorder Configuration screen. 

 

 
 



 SPECIAL ISSUE: COMPUTER SCIENCE 
 

 

 

www.iioab.org | Mukherjee. 2018 | IIOABJ | Vol. 9 | 2 | 54-60 | 

 

56 

 
Start and Navigate the application 
 

Now we need to navigate to the browser and do the activity in application to record the test cases we want to record. 

 
Stop recording and Save 
 
Once we done with the test cases and recording has been complete, we can stop the recording and save from 

Recorder Configuration screen and request*.txt file will be generated under request-bodies folder. 

 
Copy the *.scala and *.txt files to the correct directories in application  
 
Now we have completed recording and scala simulation file should be generated in the path we mentioned in 

Gatling Recorder Configuration [5] screen.We now need to copy the .scala and .txt files to the correct directories in 

application to have the test case ready. 

 
Run the scalability test with the maven  
 
Now we are good with run the scalability test with maven. We can use below command to run the scalability test 

cases from command prompt. 

mvn -Pscalability gatling:execute Dgatling.simulationClass=com.vaadin.gatling.test.YourRecordedSimulation 

We also need to configure pom.xml to get Gating working with maven. Below I have given a  sample pom file 

mentioned Gatling configuration with vaadin [5, 6]. 

 

<?xml version="1.0" encoding="UTF-8"?> 

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance" 

         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd"> 

    <modelVersion>4.0.0</modelVersion> 

    <groupId>org.vaadin</groupId> 

    <artifactId>gatling-vaadin-integration</artifactId> 

    <packaging>war</packaging> 

    <version>1.0-SNAPSHOT</version> 

    <name>gatling-vaadin-integration</name> 

    <properties> 

        <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding> 

        <vaadin.version>7.3.2</vaadin.version> 

        <vaadin.plugin.version>${vaadin.version}</vaadin.plugin.version> 

    </properties> 

    <repositories> 

        <repository> 

            <id>vaadin-addons</id> 

            <url>http://maven.vaadin.com/vaadin-addons</url> 

        </repository> 

        <repository> 

            <id>vaadin-snapshots</id> 

            <url>http://oss.sonatype.org/content/repositories/vaadin-snapshots/</url> 

            <releases> 

                <enabled>false</enabled> 

            </releases> 

            <snapshots> 

                <enabled>true</enabled> 

            </snapshots> 

        </repository> 

    </repositories> 

    <pluginRepositories> 

        <pluginRepository> 

            <id>vaadin-snapshots</id> 

            <url>http://oss.sonatype.org/content/repositories/vaadin-snapshots/</url> 

            <releases> 

                <enabled>false</enabled> 

            </releases> 

            <snapshots> 

                <enabled>true</enabled> 

            </snapshots> 

</pluginRepository> 

    </pluginRepositories> 

<dependencies> 

         <dependency> 



 SPECIAL ISSUE: COMPUTER SCIENCE 
 

 

 

www.iioab.org | Mukherjee. 2018 | IIOABJ | Vol. 9 | 2 | 54-60 | 

 

57 

             <groupId>com.vaadin</groupId> 

             <artifactId>vaadin-server</artifactId> 

             <version>${vaadin.version}</version> 

         </dependency> 

         <dependency> 

             <groupId>com.vaadin</groupId> 

             <artifactId>vaadin-client-compiled</artifactId> 

             <version>${vaadin.version}</version> 

         </dependency> 

         <dependency> 

             <groupId>com.vaadin</groupId> 

             <artifactId>vaadin-client</artifactId> 

             <version>${vaadin.version}</version> 

             <scope>provided</scope> 

         </dependency> 

         <dependency> 

             <groupId>com.vaadin</groupId> 

             <artifactId>vaadin-push</artifactId> 

             <version>${vaadin.version}</version> 

         </dependency> 

         <dependency> 

             <groupId>com.vaadin</groupId> 

             <artifactId>vaadin-themes</artifactId> 

             <version>${vaadin.version}</version> 

         </dependency> 

         <dependency> 

             <groupId>javax.servlet</groupId> 

             <artifactId>javax.servlet-api</artifactId> 

             <version>3.0.1</version> 

             <scope>provided</scope> 

         </dependency> 

         <dependency> 

             <groupId>io.gatling.highcharts</groupId> 

             <artifactId>gatling-charts-highcharts</artifactId> 

             <version>2.0.1</version> 

             <scope>test</scope> 

         </dependency> 

     </dependencies> 

     <build> 

        

         <plugins> 

             <plugin> 

                 <groupId>io.gatling</groupId> 

                 <artifactId>gatling-maven-plugin</artifactId> 

                 <version>2.0.0</version> 

                 <executions> 

                     <execution> 

                         <id>loadtest</id> 

                        <!-- 

                            Configure the test to be run during integration-test 

                            phase automatically. Jetty server is configured to  

                            be running during integration tests in this example. 

                        --> 

                        <phase>integration-test</phase> 

                        <goals> 

                            <goal>execute</goal> 

                        </goals> 

                        <configuration> 

                            <!-- Default values --> 

                            <!--<configFolder>src/test/resources</configFolder--> 

                            <dataFolder>src/test/resources/data</dataFolder> 

                            <resultsFolder>target/gatling/results</resultsFolder> 

                            <requestBodiesFolder>src/test/resources/request-bodies</requestBodiesFolder> 

 

                            <simulationsFolder>src/test/scala</simulationsFolder> 

                        </configuration> 

                    </execution> 

                </executions> 

            </plugin> 

            <plugin> 

                <groupId>org.apache.maven.plugins</groupId> 



 SPECIAL ISSUE: COMPUTER SCIENCE 
 

 

 

www.iioab.org | Mukherjee. 2018 | IIOABJ | Vol. 9 | 2 | 54-60 | 

 

58 

                <artifactId>maven-compiler-plugin</artifactId> 

                <configuration> 

                    <source>1.7</source> 

                    <target>1.7</target> 

                </configuration> 

                <version>3.1</version> 

            </plugin> 

            <!-- As we are doing "inplace" GWT compilation, ensure the widgetset --> 

            <!-- directory is cleaned properly --> 

            <plugin> 

                <artifactId>maven-clean-plugin</artifactId> 

                <version>2.4.1</version> 

                <configuration> 

                    <filesets> 

                        <fileset> 

                            <directory>src/main/webapp/VAADIN/widgetsets</directory> 

                        </fileset> 

                    </filesets> 

                </configuration> 

            </plugin> 

            <plugin> 

                <groupId>org.apache.maven.plugins</groupId> 

                <artifactId>maven-war-plugin</artifactId> 

                <version>2.2</version> 

                <configuration> 

                    <failOnMissingWebXml>false</failOnMissingWebXml> 

                </configuration> 

            </plugin> 

            <plugin> 

                <groupId>org.eclipse.jetty</groupId> 

                <artifactId>jetty-maven-plugin</artifactId> 

                <version>9.2.2.v20140723</version> 

                <configuration> 

     <scanIntervalSeconds>2</scanIntervalSeconds> 

     <httpConnector> 

      <port>${test.port}</port> 

     </httpConnector> 

    </configuration> 

                <executions> 

                    <!-- Configure jetty to start/stop the application  

                        for integration testing. 

                    --> 

                    <execution> 

                        <id>start-jetty</id> 

                        <phase>pre-integration-test</phase> 

                        <goals> 

                            <goal>run-exploded</goal> 

                        </goals> 

                        <configuration> 

                            <scanIntervalSeconds>0</scanIntervalSeconds> 

                            <daemon>true</daemon> 

                            <stopKey>STOP</stopKey> 

                            <stopPort>8866</stopPort> 

                        </configuration> 

                    </execution> 

                    <execution> 

                        <id>stop-jetty</id> 

                        <phase>post-integration-test</phase> 

                        <goals> 

                            <goal>stop</goal> 

                        </goals> 

                        <configuration> 

                            <stopPort>8866</stopPort> 

                            <stopKey>STOP</stopKey> 

                        </configuration> 
                    </execution> 

                </executions> 

            </plugin> 

        </plugins> 

    </build> 

     



 SPECIAL ISSUE: COMPUTER SCIENCE 
 

 

 

www.iioab.org | Mukherjee. 2018 | IIOABJ | Vol. 9 | 2 | 54-60 | 

 

59 

     <profiles> 

  <profile> 

   <id>dev</id> 

   <activation> 

    <activeByDefault>true</activeByDefault> 

   </activation> 

   <properties> 

    <test.port>8084</test.port> 

    <jetty.stop.port>8090</jetty.stop.port> 

    <test.hostname>localhost</test.hostname> 

   </properties> 

  </profile> 

  <profile> 

   <id>ci</id> 

   <properties> 

    <test.port>8082</test.port> 

    <jetty.stop.port>8082</jetty.stop.port> 

    <test.hostname>localhost</test.hostname> 

   </properties> 

  </profile> 

 </profiles> 

  

</project> 

Gatling has the following interesting features: 

 Standalone HTTP Proxy Recorder, [5] 

 Scala-based scripting, 

 An expressive self-explanatory DSL for test development, 

 asynchronous non-blocking engine for maximum performance, 

 Excellent support of HTTP(S) protocols and can also be used for JDBC and JMS load testing, 

 Validations and assertions, 

 a Comprehensive HTML Report. 

 Here is what a Gatling simulation looks like:  

Gatling uses a more advanced engine based on Akka. Akka is a distributed framework based on the 

actor model. It allows fully asynchronous computing [5,6]. Actors are small entities communicating 

with other actors through messaging. It can simulate multiple virtual users with a single Thread. 

Gatling also makes use of Async HTTP Client. 

The most simple HTTP test one can come up with is probably opening a web page and check that 

some content is being displayed. So, let’s do that. 

If it does not exist yet, please create a src/test/scala directory and use whichever package you prefer. 

Every class has to extend io.gatling.core.scenario. Simulation in order to be recognized by Gatling. 

Additionally, the imports 

import io.gatling.core.Predef._ 

import io.gatling.http.Predef._ 

are recommended. A Gatling module (here: core and HTTP) generally defines a class called Predef, which 

represents the central access point to that library. E.g. if we take a look at the io.gatling.http.Predef class, 

we can see that it just defines two types and extends io.gatling.http.HttpDsl, which provides the HTTP 

methods we need. 

Validate the Scalability test results 

Once maven command excuted successfully we can see the Gatling scalability test result in console and 

index.html file in  /target/gatling/results/basicvaadinhellosimulation-1521470271678/index.html.This 

index.html file will have the entire report of scalability testing.    

 

http://akka.io/
https://hc.apache.org/httpcomponents-client-ga/
https://github.com/gatling/gatling/blob/master/gatling-http/src/main/scala/io/gatling/http/Predef.scala


 SPECIAL ISSUE: COMPUTER SCIENCE 
 

 

 

www.iioab.org | Mukherjee. 2018 | IIOABJ | Vol. 9 | 2 | 54-60 | 

 

60 

RESULTS 

As a result we will be able to execute recorded scalability test cases and we can see the test report as 

shown if Fig-2. We can configure the number of users and will access the application in given timeframe in 

scala file. 

 

// This uses more load, simulates 100 users who arrive with-in 10 seconds 

 setUp(scn.inject(rampUsers(100) over (10 seconds))).protocols(httpProtocol) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2:  Test report 

…………………………………………………………………………………………………. 

 

CONCLUSION 
 

Integrating Gatling for Vaadin [6] application to get load testing and scalability report for application to how 

the application will run in production and we can test with given number of users to see how its 

performing. Whichever way you chose to execute the tests, a results directory should have appeared. 

Within this directory another directory with the name of the scenario and a timestamp should be present. 

And lastly, within that one, an index.html file. This webpage contains all of the data that was collected by 

Gatling during the simulation, presented in a nice way. 

 

CONFLICT OF INTEREST  
None 

  

ACKNOWLEDGEMENTS  
None 

 
FINANCIAL DISCLOSURE  
None 

 

REFERENCES 

 
1. Gatling Corp. [2018] Gatling Documentation, Quickstart. 

Gatling Corp. Retrieved January 12, 2018. 

2. Latinov L. [ 2017] Performance testing with Gatling. 

Automation Rhapsody. Retrieved September 1, 2017. 

"Scenario is a series of HTTP Requests with different action 

(POST/GET) and request parameters. Scenario is the actual 

user execution path. It is configured with load users count 

and ramp up pattern. This is done in the Simulation’s 

“setUp” method. Several scenarios can form one 

simulation." 

3. Rao SP et al. [ 2017). Gatling: A Lightweight Load Testing 

Tool. Performance Zone. DZone. Retrieved September 1, 

2017. "Gatling consumes fewer system resources to run a 

load test than other options." 

4. Latinov L.  [2017] Performance testing with Gatling. 

Automation Rhapsody. Retrieved September 1, 2017. 

"Simulation” is the actual test. It is a Scala class that 

extends Gatling’s io. gatling.core. scenario. Simulation class. 

Simulation has a HTTP Protocol object instantiated and 

configured with proper values as URL, request header 

parameters, authentication, caching, etc. Simulation has 

one or more “Scenario”. 

5. Latinov L. [2017] Performance testing with Gatling. 

Automation Rhapsody. Retrieved September 1, 2017. It is 

capable of creating immense amount of traffic from a single 

node. 
6. Vaadin Tutorial. 

https://vaadin.com/docs/v8/framework/tutorial.html 
  

https://vaadin.com/docs/v8/framework/tutorial.html

