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ABSTRACT 
 
Most of the web service selection methods don’t account for conflicting objectives. These work by combining the objective function into a 

single objective function by scalarization. When the value of weights is, not given and fixed weights are used, this can lead to problems. In 

this paper, modified reinforcement learning algorithms are proposed which are used to derive Single policy and multiple policy solutions 

respectively and applies the concept of multi-agent Reinforcement learning and value iteration respectively in the original algorithm which 

uses fixed weights, our algorithm modifies the weights in order to achieve output. Our proposal algorithm dynamically updates the weight for 

the objectives functions in the value function vector to achieve accuracy especially for large no. of states (value function approximation). Our 

modified algorithm uses the combination of multi objectives reinforcement learning with value function approximation to achieve better 

results. We are formulating the problem as a multi objectives partially observable Markov Decision Model problem description.  In pervasive 

environment, such technique can prove to be useful for selecting web services. Examples of such services are E- Governance applications. 

 

INTRODUCTION 
  
A large number of services are being offered on mobile today like E Governance application. A large 

amount of study has been undertaken to examine web service composition in dynamic pervasive 

environments I.e. which are aware of the environment and change their behavior accordingly (content 

aware).Web service composition engine takes in data which mostly consists of content sensitive data in 

the form of ontology of the domain. 

 

Selecting web services out of a set of web services in order to create a composite web services is a 

complex task. When selecting web services from the set, certain QoS parameters have to be considered, 

this is known as QoS aware service composition. 

 

QoS-aware web service selection has been widely researched in areas of service oriented Architecture 

(SOA)and service oriented computing (SOC)[1].All the existing approaches deals with evaluating objective 

functions of QoS parameters by combining them into a single objective function. 

 

More-over, they give solutions which are not optimal. We propose two hybrid algorithms which formulate 

the web service selection as a multi-objective optimization problem .This involves simultaneous 

optimization of multiple objectives [1]. 

 

We have used 5 parameters which are mentioned in the problem description some of them are conflicting 

objectives like availability and response which are both positive when one has to be maximum and one 

has to be minimum in response to wrong inputs. 

 

Availability= Q availability [29] 

 

Response time = [100*(exp(-r^2)*exp(-r+0.1r))/(1+exp(-r+0.1r)] [29] 

 

In single policy algorithm, weight is assigned by us whose purpose is to create a bias between preference 

of services and it is updated to maximize the LMS (Least mean square error) between them. 

 

The problem of selecting web services has been studied in great detail. Various Techniques have been 

applied to selection of web services such as mixed integer Programming which formulates the problem as 

a multi-objective mixed integer programming problem [1]. In mixed integer linear programming, all 

variables do not belong to integer group but only a few. 

 

Another formulation of the web service composition problem is the knapsack problem which is multiple 

choice and multi-dimensional (MMKP). In MMKP, 

 

Weight= (w1,w2,w3,…,wd )  Capacity = (c1,c2,c3,…,cd )[26 ] The aim is to maximize the ratio of sum of 

value of items in the knapsack to the sum of weights in such dimension of the knapsack. [26]. Another 

formulation uses an immune binary PSO (IDIPSO) is proposed. 
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IDIPSO uses immune concepts and methods with PSO to solve the web service composition problem. [5] 

The web service composition problem is formulated as multi-objective ant colony optimization and is 

solved using multi objective ant colony optimization. [6] 

 

Petri net based algebra is also used to model web service composition process related work. [27]This 

algebra is expressive enough to capture the semantics of complex web service composition. [27] Another 

formulation of web service composition uses the LIAC algorithm to construct the service path [14]. Web 

service composition has applications in pervasive computing. 

 

Related Work 

 

Wang et al [1] proposed a method to select a web service from a set of web service using mixed integer 

programming. Confora et al [1] proposed a method to select a web service from a set of web service using 

GA (genetic algorithm). Kiu and Lin [1] proposed a method to select a web service from a set of web 

service by formulating it as a knapsack problem which is both multiple choice and multi- dimensional. 

 

The problem of selecting a web service from a set of web service can be solved using non-linear 

techniques as proposed by Grossmann [3]. In (Ran 2003) the main idea is to incorporate the QoS 

awareness into the UDDI registries as to facilitate QoS aware service discovery.  

 

IDIPSO uses immune concepts and methods with PSO to solve the web service composition problem .[5] 

The problem of selecting web service from a set of web service can be solved by using multi-objective ant 

colony optimization.[5] The problem of selecting web service from a set of web services can be solved 

using elitist MOEA ,Zitzler’s and Thielem’s SPFA [6], Knowles and corne’s  Pareto-archived PAES [7] and 

Rudolph elitist    GA [8]. The problem of selecting a web service from a set of web service can be solved by 

using Petri nets as proposed by Hamadi and Benatallah [9]. 

 

The problem can also be solved using Maxmilien and Singh’s [10] approach which is based on learning 

based on historical information but without explanation.[11] and PICO as proposed by kalasapur et al [11] 

which solves the problem using graph theory and the LIAC algorithm as proposed by Raman and Katz [12]. 

 

Various middleware has been proposed such as spider net by Gu et al to solve the above problem. [15] the 

problem of selecting web services from a set of web services is a pervasive involvement has been studied 

by Sonia, Nicolas, Valerie [13].Application of the above problem to business   process has been proposed 

by F. Koshkina And M. Von Bruegel [16].In software agent oriented approach solve the above problem has 

been proposed by Za  aria maonnar, sorayukocicedic and hamdii vahyavi [17]. 

 
Objective function for QoS parameters for web services 
 
We are using Response time, availability, throughput, successability, reliability as our objectives. 

 

Response Time- Response time is the overall time required to complete a server request. [29] 

 

Q (Response time) = [100*(exp(-r^2)*exp(-r+0.1r))/(1+exp(-r+0.1r)] [29] 

 

Availability - It is a factor which measures whether the server is up after selection [29] 

 

Throughput – It is referred as total number of completed transactions by a web service over a time period 

 

Successability – It is defined as the extent to which web services yield successful results over request 

messages. 

 

Reliability – It is ability of a web service to perform well over a given time span [29]. 

 

Most of the web service selection methods don’t account for conflicting objectives. These work by 

combining the objective function into a single objective function by scalarization. Eg- when there are 

conflicting inputs to a web service i.e. parameters conflicts, the availability is high which is to be maximized 

and the response time is also high which is to be minimized. 

 

Markov decision process 
 

We formulate the problem as an MOMDP-WSC (Multi Objective Markov Decision Process Web Service 

Composition). This is applied to multi objective optimization in partially observable environment. MDPs has 

applications in optimization problems and reinforcement learning and dynamic programming. MDPs is a 

random process .An MDPs consists of transition diagram between states and a reward function R(s, s’) 

after moving from one state to another. [28] 

 

An MOMDP-WSC is defined as a 6-tuple MOMDP-WSC-[(s), Si, St, A, P, R] 

 

S- Set of states agents can be in 
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Si- state from which agents starts 

St – set of terminals  

A-Set of action (web services) that can be executed by the agent (web services composition engine) 

P is the probability of going from one state to another by choosing an action. 

 

Output of MOMDP-WSC is an optimal decision policy 

 

π: S  A 

 

Each policy of MOMDP-WSC can define a single workflow, and therefore, the task of our service 

composition model is to identify the set of Pareto optimal policies that gives the best trade-offs among 

multiple QoS criteria. [1] 

 

Multi objective reinforcement learning for service composition [1] 

 

The goal of MORL is to require the set of Pareto- Optimal Policies in MOMDP model [1] 

 

Moreover, [V (s) = (V1π    (s), V2 π (s), ………, Vm π   (s)] 

 

Is the value vector of scale s under policy π and it is defined by  

 

Eπ    - Mean 

S π    - State 

rπ    - Reward vector 

r – Discount rate parameter 

 

We also define the Q – learning vector 

 

Qπ    (s,a) = E π    {∑infk=0gammakrt+k+1|st=s, at=a} [1] 

 

The MORL consists of two classes of algorithms, single policy algorithm and multiple policy algorithm. 

Single policy finds the single state to action mapping of an MDP formulation using multi agent 

reinforcement learning. The multiple policy algorithms produce many solutions in form of policies of the 

MDP formulation. [1] 

 
Value function approximation [2] 

 

Value Function Approximation deals with approximation of value function using another function, we 

approximate the weight of value function using value function approximation which helps us to     obtain 

an accurate solution for large number of actions. 

 

The aim is to estimate the value function with function approximation 

vˆ(s,w)  v  π    (s) 

or qˆ (s,a,w)   q π (s,a)       

 

And to generalise from seen states to unseen states [2] 

 

Update the weights of the value vectors dynamically (with the following formula) 

 

V (S, W) = X(S)TW = E∑nJ=1XJ(S)wJ[2] 

 

Objective function for W:- 

J(w) =  E π[(vπ(s) – x(S)Tw)2] [2] 

update rule is particularly simple-  

DERIVATIVE  

Vˆ(s,w) = x(S) 

∆w = α(v π(S)  -  vˆ(s,w))(x(S)) [2] 

update = step size x prediction error x feature value. 

We apply the above value approximation to the single policy and multiple policy algorithm.  
 
Architecture diagram 
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Fig. 1: Modified single policy reinforcement learning algorithm. 

……………………………………………………………………………………………………… 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2: Modified multiple policy reinforcement learning algorithm.                               

…………………………………………………………………………………………………………… 

 

METHODOLOGY 
 

Modified single policy multi objective service composition 
 

In the first algorithm, each QoS objective is implemented as a separate Q learning agent [1] at every state 

& each agents selects its own such service (agent’s performance) that optimizes its own QoS objectives. 

The relative gain is calculated obtained by agents in choosing its own web service to the reward obtained 

by choosing the service recommended by other agent. The agents negotiates among themselves to reach 

on optimum decision policy.  

 

Our modified algorithm states that we assign a performance to the objective function by multiplying with its 

weights. The optimum decision policy is calculated by choosing its action with maximum state action value 

(reward). The weights are updated dynamically by using value function approximation in order to minimize 

its least square error between its optimum decision value function and the current value function (current 
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iteration) which helps to iteratively achieve the optimal decision policy in a shorter time and provide 

approximately accurate to a large no. of actions.(Fig 1)   

 

First, we randomly choose an agent which selects an optimal action based on epsilon –greedy policy. The 

remaining agents optimizes the remaining objective function assigned to them by calculating the relative 

reward gained by choosing their choice to optimize the objective function assigned to them or following the 

choice of the randomly chosen agent (single policy algorithm). 

 

Modified single policy algorithm 
 
The algorithm consists of the following steps 
 

1. Agent negotiation (discussed above) 

2. Weight updation 

Function single_policy_algorithm() [1] 

{ 

Choose a starting states from set of states 

k=random integer between 1 to the no of actions 

Re_k=0//maximum reward so far 

Re_i=0 // maximum reward at each iteration   

deltaW=0 //change in weight 

gamma=0.01 //discount factor for reinforcement learning equation 

epsilon=0.01 //error limit 

ak=index of service with maximum  re ward of agent k ‘s objective function     

repeat 

for all agents I except k do 

{ 

t=maximum of agent_i ‘s objective function 

 t2=W[agent_i]*(max-R_[s,ak,agent_i])  #agent  negotiation relative reward //obtained when agent_i 

choose his choice rather than following the choice of randomly //chosen agent 

deltaW= alpha * (Re_k-t2)*(t2/W[agent_i]) //change in weight 

W[agent_i]=W[agent_i]+(deltaW) #weight updation 

if t2 > max3: //choosing max Re_i 

{ 

    max3=t2 

Re_i=t2 

} 

ifRe_i>Re_k : #in general case we keep Re_i for all agents except k 

{ // if obtained  reward is greater than maximum  reward 

 Re_k=Re_i 

 k=agent_i #argmax(R_agent_i([s,a,agent_i])) 

} 

if delta < abs(Re_i-t): //convergence condition 

delta= abs(Re_i-t) 

if (delta < epsilon * (1 - gamma) / (gamma))  : 

break 

maxiter=maxiter+1 

print ("Iteration No",maxiter) 

if maxiter == 15: 

break 

} 

If maxiter == 15: 

break 

} 

 

Multiple policy multi-objective service composition 
 

The multiple policy algorithm uses an exact method to solve the MDP formulation of the problem known as 

value iteration is use to solve the problem, this is combined with dynamic programming which updates the 

state value action vector by calculating the convex hull in 2 dimensions. 

 

In multiple policy algorithm, we use value iteration and dynamic programming to calculate the convex hull 

in 2 dimensions. We then choose the action which is optimal i.e., which has maximum value when we dot 

product of the reward with weight .we update the state action value function according to value iteration 

and weights according to value approximation. We have used availability and response time as parameters 

as they are conflicting objective because when we supply wrong inputs to web service the availability is 

positive and response time is negative.(Fig 2) 

 

We compute the convex hull in 2 dimensions. There two objectives using the following equations→ 

1. Convex Hull(Union(Q(s’,a’))={q belongs to Q(s’,a’) | max {w.q}} 

2. Q(s,a)=(1-alpha)Q(s,a) + alpha[r(s,a) + gamma* (Convex Hull(Union(Q(s’,a’)))] 
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3. W=w+delta(w) 

 

Multiple policy multi-objective service composition algorithm 
 
The algorithm consists of the following steps 
 

1. Convex hull calculation (discussed above) 

2. Value iteration 

3. Weight updation 

Function multiple_policy_algorithm()  [2] 

{ 

Initialize state action value function Q 

epsilon=0.5 //error condition 

max=0 //for convex hull  

maxiter=0 //max iterations 

Re_k=0 // maximum reward so far 

total=asarray([0.5,0.5])  //weights (value function approximation) 

for maxiter in range(0,T) 

{ 

Initialize state variables s= random integer between 1 to the no of states 

Calculate maximum reward from actions in next states 

Max’= Convex Hull (Union(Q(s’,a’))={q belongs to Q(s’,a’) | max {w.q}} 

Update q using the following formula: 

Q(s,a)=(1-alpha)Q(s,a) + alpha[r(s,a) + gamma* (Convex Hull(Union(Q(s’,a’)))] 

 Deltaw=w.dot(max(Union(Q[s’,a’]))) 

 W=w+deltaw 

 S=s’ 

` if(s==send) 

 { 

 Break;}}} 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3: Flow diagrams of multiple policy reinforcement learning algorithm. 

…………………………………………………………………………………………………………… 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4: Flow diagrams of single policy reinforcement learning algorithm. 

………………………………………………………………………………………………………………… 
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Data Set (Table 1) is parsed using Data Set Parser. Inputs in form of vectors are passed to the modified 

single policy reinforcement learning solver and modified multiple policy reinforcement learning solver. 

From both the algorithms, we get the optimal decision policy (Fig. 3 and 4)  

 

EXPERIMENT RESULTS AND ANALYSIS 
 

We have considered the following dataset 
 

Table 1: Sample QWS dataset with QOS parameters 
 

Name of web service Availability Response 
Time 

Throughput Successability Reliability 

MAPP Matching 302.75 89 7 90 73 

MSSOAP INTEROP 482 85 16 95 73 

STRIKE IRON 3321 89 1.39 96 73 

HOLIDAY WEB SERVICE 126 98 12 100 67 

GALEX 107 87 1.89 95 73 

INTEROP 107 80 1.7 81 67 

EMBOSS4 255 98 1.29 99 67 

EMBL-EBI 136 76 2.79 76 60 

SERVICEOBJECTS.COM 102 91 15.300 97 67 

LEAD TOOLS 93 96 13.5 99 67 

 

Single policy algorithm 
 
Algorithm trace out 
 
Agent negotiation and weight updation and accumulated reward 
 

1. Agent negotiation relative reward  obtained when agent_i choose his choice rather than following the 

choice of randomly chosen agent 

2. Reward updation 

3. Weight updation 

4. Choosing  action with max reward 

Index of web services with Maximum value of objective function: 2 

delta W -3.50398068269 

Re_i:  3.94629541198 

Index of web services with Maximum value of objective function: 2 

delta W 0.0 

Re_i:  0.0 

Index of web services with Maximum value of objective function: 2 

delta W 0.0 

Re_i:  0.0 

Index of web services with Maximum value of objective function: 2 

delta W 0.0 

Re_i:  0.0 

Index of web services with Maximum value of objective function: 2 

delta W 0.0 

Re_i:  0.0 

Index of web services with Maximum value of objective function: 2 

delta W 0.0 

Re_i:  0.0 

Index of web services with Maximum value of objective function: 2 

delta W 0.0 

Re_i:  0.0 

Re_k:  3.94629541198 

Iteration No 1 

Accumulated Reward: 3.94629541198 

and so on till convergence condition or till max iterations. 

 
Multiple policy algorithm 

 

The algorithm consists of the following steps: 

 

1. Epsilon-greedy strategy: 

2. Convex hull calculation  

3. Value iteration 

4. Weight updation 
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Algorithm trace out 
 

Modified multiple policy algorithm with value function approximation 

Maximum value of objective function: [[0.010160994923391649, 12.239028778368278, 

0.72789115734524901, 1.0, 0.53846153846153844]] 

Index of web services with Maximum value of objective function: [3] 

Accumulated Reward: 162.072528122 

 

Iteration No 1 

 

Maximum value of objective function: [[0.010160994923391649, 12.239028778368278, 

0.72789115734524901, 1.0, 0.53846153846153844], [0.004398966982931054, 

38.41560588468586, 0.02721089075305546, 0.20833333333333334, 0.5384615384615384], 

[0.013426147004615304, 50.0, 0.10204081599553161, 0.0, 0.0]] 

Index of web services with Maximum value of objective function: [3, 5, 7] 

Accumulated Reward: 541.358115854 

 

Iteration No 2 

 

Maximum value of objective function: [[0.010160994923391649, 12.239028778368278, 

0.72789115734524901, 1.0, 0.53846153846153844], [0.004398966982931054, 

38.41560588468586, 0.02721089075305546, 0.20833333333333334, 0.5384615384615384], 

[0.013426147004615304, 50.0, 0.10204081599553161, 0.0, 0.0], [0.004398966982931054, 

38.41560588468586, 0.02721089075305546, 0.20833333333333334, 0.5384615384615384], 

[0.013426147004615304, 50.0, 0.10204081599553161, 0.0, 0.0]] 

Index of web services with Maximum value of objective function: [3, 5, 7, 5, 7] 

Accumulated Reward: 1200.85210952 

 

Iteration No 3 

 

Maximum value of objective function: [[0.010160994923391649, 12.239028778368278, 

0.72789115734524901, 1.0, 0.53846153846153844], [0.004398966982931054, 

38.41560588468586, 0.02721089075305546, 0.20833333333333334, 0.5384615384615384], 

[0.013426147004615304, 50.0, 0.10204081599553161, 0.0, 0.0], [0.004398966982931054, 

38.41560588468586, 0.02721089075305546, 0.20833333333333334, 0.5384615384615384], 

[0.013426147004615304, 50.0, 0.10204081599553161, 0.0, 0.0], [0.004398966982931054, 

38.41560588468586, 0.02721089075305546, 0.20833333333333334, 0.5384615384615384], 

[0.013426147004615304, 50.0, 0.10204081599553161, 0.0, 0.0]] 

Index of web services with Maximum value of objective function: [3, 5, 7, 5, 7, 5, 7] 

Accumulated Reward: 1807.09099934 

 

Iteration No 4 

 

Maximum value of objective function: [[0.010160994923391649, 12.239028778368278, 

0.72789115734524901, 1.0, 0.53846153846153844], [0.004398966982931054, 

38.41560588468586, 0.02721089075305546, 0.20833333333333334, 0.5384615384615384], 

[0.013426147004615304, 50.0, 0.10204081599553161, 0.0, 0.0], [0.004398966982931054, 

38.41560588468586, 0.02721089075305546, 0.20833333333333334, 0.5384615384615384], 

[0.013426147004615304, 50.0, 0.10204081599553161, 0.0, 0.0], [0.004398966982931054, 

38.41560588468586, 0.02721089075305546, 0.20833333333333334, 0.5384615384615384], 

[0.013426147004615304, 50.0, 0.10204081599553161, 0.0, 0.0], [0.013426147004615304, 50.0, 

0.10204081599553161, 0.0, 0.0]] 

 

Index of web services with Maximum value of objective function: [3, 5, 7, 5, 7, 5, 7, 7] 

 

Accumulated Reward: 2468.55487898  

 
Parameter Meaning Value 

Alpha learning rate  0.1 

Gamma discount factor   0.01 

 
The experiments results were to examine the ability of the hybrid algorithm. results are as follows: 

 

1-Singly policy reinforcement learning algorithm 

2-improved algorithm  
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Fig. 5:  Modified single policy vs single policy algorithm. 

…………………………………………………………………………………………………………………… 
 

As you can see in the above chart, the accumulated reward for modified single policy algorithm is greater 

than the accumulated reward for original algorithm. This is true for each iteration, thus the quality of 

solutions obtained by Modified single policy algorithm is greater than single policy algorithm.(Fig 5) 

 

Thus the modified algorithm yield better results than original algorithm  

 

1-Multiple policy reinforcement learning algorithm 

2-improved algorithm  

 

 

 

 

 

 

 

 

 

 
Fig. 6: Multiple policy algorithm vs modified multiple policy algorithms. 

…………………………………………………………………………………………………………………… 
 

As you see in the above chart the accumulated reward for modified multiple policy algorithm is greater 

than the accumulated reward algorithm for original multiple policy algorithm. This is true for each iteration, 

thus the quality of solutions obtained by Modified multiple policy algorithm is greater than multiple policy 

algorithm.(Fig 6) 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Fig. 7: No of solutions in single policy algorithm an multiple policy algorithms. 

…………………………………………………………………………………………………………………… 
 

As you can see from the above chart, the no of solutions obtained in multiple policy algorithms is greater 

than no of solutions obtained in single policy algorithm. Thus, multiple policy algorithms is better than 

single policy algorithm. Thus, we can obtain multiple solutions to the same problem in multiple policy 

algorithms as compared to single policy algorithm.(Fig 7) 
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CONCLUSION 
 
We propose modified reinforcement learning algorithm, the result have shown that the modified 

reinforcement learning algorithm is more effective than the original algorithm for selecting a web services 

in a pervasive environments. The future work is to further modify learning algorithm to achieve better 

results. The effectiveness of the proposed reinforcement learning algorithm is shown in the results. 

 

The scenario addressed by single policy algorithm is that we have partially observable environment and we 

want to find the optimal state of action mapping of the MDP formulation of the problem .This is single in 

number in single policy algorithm .The scenario addressed by multiple policy algorithm is that we want to 

find multiple solutions to the MDP formulation of the problem. The future work involves optimization of the 

value function approximation technique to yield better results. 
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