
REGULAR ISSUE

www.iioab.org | Gupta & Rajeshkannan 2017 | IIOABJ | Vol. 8 | 4 | 29–39 |

29

C
O

M
P

U
TE

R
 S

C
IE

N
C

E

Received: 11 March 2017

Accepted: 20 May 2017

Published: 17 July 2016

KEY WORDS

cloud computing, web

service

selection,reinforcement

learning

*Corresponding Author

Email:

deepak.gupta2013@vit.ac.in

ARTICLE
QOS-AWARE CLOUD SERVICE SELECTION IN DYNAMIC

PERVASIVE ENVIRONMENTS
Deepak Gupta

1*
, Rajeshkannan R

2

1
Student, School of Computer Science And Engineering VIT University, Vellore, INDIA

2
Professor, School of Computer Science And Engineering, VIT University, Vellore, INDIA

ABSTRACT

Most of the web service selection methods don’t account for conflicting objectives. These work by combining the objective function into a

single objective function by scalarization. When the value of weights is, not given and fixed weights are used, this can lead to problems. In

this paper, modified reinforcement learning algorithms are proposed which are used to derive Single policy and multiple policy solutions

respectively and applies the concept of multi-agent Reinforcement learning and value iteration respectively in the original algorithm which

uses fixed weights, our algorithm modifies the weights in order to achieve output. Our proposal algorithm dynamically updates the weight for

the objectives functions in the value function vector to achieve accuracy especially for large no. of states (value function approximation). Our

modified algorithm uses the combination of multi objectives reinforcement learning with value function approximation to achieve better

results. We are formulating the problem as a multi objectives partially observable Markov Decision Model problem description. In pervasive

environment, such technique can prove to be useful for selecting web services. Examples of such services are E- Governance applications.

INTRODUCTION

A large number of services are being offered on mobile today like E Governance application. A large

amount of study has been undertaken to examine web service composition in dynamic pervasive

environments I.e. which are aware of the environment and change their behavior accordingly (content

aware).Web service composition engine takes in data which mostly consists of content sensitive data in

the form of ontology of the domain.

Selecting web services out of a set of web services in order to create a composite web services is a

complex task. When selecting web services from the set, certain QoS parameters have to be considered,

this is known as QoS aware service composition.

QoS-aware web service selection has been widely researched in areas of service oriented Architecture

(SOA)and service oriented computing (SOC)[1].All the existing approaches deals with evaluating objective

functions of QoS parameters by combining them into a single objective function.

More-over, they give solutions which are not optimal. We propose two hybrid algorithms which formulate

the web service selection as a multi-objective optimization problem .This involves simultaneous

optimization of multiple objectives [1].

We have used 5 parameters which are mentioned in the problem description some of them are conflicting

objectives like availability and response which are both positive when one has to be maximum and one

has to be minimum in response to wrong inputs.

Availability= Q availability [29]

Response time = [100*(exp(-r^2)*exp(-r+0.1r))/(1+exp(-r+0.1r)] [29]

In single policy algorithm, weight is assigned by us whose purpose is to create a bias between preference

of services and it is updated to maximize the LMS (Least mean square error) between them.

The problem of selecting web services has been studied in great detail. Various Techniques have been

applied to selection of web services such as mixed integer Programming which formulates the problem as

a multi-objective mixed integer programming problem [1]. In mixed integer linear programming, all

variables do not belong to integer group but only a few.

Another formulation of the web service composition problem is the knapsack problem which is multiple

choice and multi-dimensional (MMKP). In MMKP,

Weight= (w1,w2,w3,…,wd) Capacity = (c1,c2,c3,…,cd)[26] The aim is to maximize the ratio of sum of

value of items in the knapsack to the sum of weights in such dimension of the knapsack. [26]. Another

formulation uses an immune binary PSO (IDIPSO) is proposed.

REGULAR ISSUE

www.iioab.org | Gupta & Rajeshkannan 2017 | IIOABJ | Vol. 8 | 4 | 29–39 |

30

C
O

M
P

U
TE

R
 S

C
IE

N
C

E

IDIPSO uses immune concepts and methods with PSO to solve the web service composition problem. [5]

The web service composition problem is formulated as multi-objective ant colony optimization and is

solved using multi objective ant colony optimization. [6]

Petri net based algebra is also used to model web service composition process related work. [27]This

algebra is expressive enough to capture the semantics of complex web service composition. [27] Another

formulation of web service composition uses the LIAC algorithm to construct the service path [14]. Web

service composition has applications in pervasive computing.

Related Work

Wang et al [1] proposed a method to select a web service from a set of web service using mixed integer

programming. Confora et al [1] proposed a method to select a web service from a set of web service using

GA (genetic algorithm). Kiu and Lin [1] proposed a method to select a web service from a set of web

service by formulating it as a knapsack problem which is both multiple choice and multi- dimensional.

The problem of selecting a web service from a set of web service can be solved using non-linear

techniques as proposed by Grossmann [3]. In (Ran 2003) the main idea is to incorporate the QoS

awareness into the UDDI registries as to facilitate QoS aware service discovery.

IDIPSO uses immune concepts and methods with PSO to solve the web service composition problem .[5]

The problem of selecting web service from a set of web service can be solved by using multi-objective ant

colony optimization.[5] The problem of selecting web service from a set of web services can be solved

using elitist MOEA ,Zitzler’s and Thielem’s SPFA [6], Knowles and corne’s Pareto-archived PAES [7] and

Rudolph elitist GA [8]. The problem of selecting a web service from a set of web service can be solved by

using Petri nets as proposed by Hamadi and Benatallah [9].

The problem can also be solved using Maxmilien and Singh’s [10] approach which is based on learning

based on historical information but without explanation.[11] and PICO as proposed by kalasapur et al [11]

which solves the problem using graph theory and the LIAC algorithm as proposed by Raman and Katz [12].

Various middleware has been proposed such as spider net by Gu et al to solve the above problem. [15] the

problem of selecting web services from a set of web services is a pervasive involvement has been studied

by Sonia, Nicolas, Valerie [13].Application of the above problem to business process has been proposed

by F. Koshkina And M. Von Bruegel [16].In software agent oriented approach solve the above problem has

been proposed by Za aria maonnar, sorayukocicedic and hamdii vahyavi [17].

Objective function for QoS parameters for web services

We are using Response time, availability, throughput, successability, reliability as our objectives.

Response Time- Response time is the overall time required to complete a server request. [29]

Q (Response time) = [100*(exp(-r^2)*exp(-r+0.1r))/(1+exp(-r+0.1r)] [29]

Availability - It is a factor which measures whether the server is up after selection [29]

Throughput – It is referred as total number of completed transactions by a web service over a time period

Successability – It is defined as the extent to which web services yield successful results over request

messages.

Reliability – It is ability of a web service to perform well over a given time span [29].

Most of the web service selection methods don’t account for conflicting objectives. These work by

combining the objective function into a single objective function by scalarization. Eg- when there are

conflicting inputs to a web service i.e. parameters conflicts, the availability is high which is to be maximized

and the response time is also high which is to be minimized.

Markov decision process

We formulate the problem as an MOMDP-WSC (Multi Objective Markov Decision Process Web Service

Composition). This is applied to multi objective optimization in partially observable environment. MDPs has

applications in optimization problems and reinforcement learning and dynamic programming. MDPs is a

random process .An MDPs consists of transition diagram between states and a reward function R(s, s’)

after moving from one state to another. [28]

An MOMDP-WSC is defined as a 6-tuple MOMDP-WSC-[(s), Si, St, A, P, R]

S- Set of states agents can be in

REGULAR ISSUE

www.iioab.org | Gupta & Rajeshkannan 2017 | IIOABJ | Vol. 8 | 4 | 29–39 |

31

C
O

M
P

U
TE

R
 S

C
IE

N
C

E

Si- state from which agents starts

St – set of terminals

A-Set of action (web services) that can be executed by the agent (web services composition engine)

P is the probability of going from one state to another by choosing an action.

Output of MOMDP-WSC is an optimal decision policy

π: S  A

Each policy of MOMDP-WSC can define a single workflow, and therefore, the task of our service

composition model is to identify the set of Pareto optimal policies that gives the best trade-offs among

multiple QoS criteria. [1]

Multi objective reinforcement learning for service composition [1]

The goal of MORL is to require the set of Pareto- Optimal Policies in MOMDP model [1]

Moreover, [V (s) = (V1π (s), V2 π (s), ………, Vm π (s)]

Is the value vector of scale s under policy π and it is defined by

Eπ - Mean

S π - State

rπ - Reward vector

r – Discount rate parameter

We also define the Q – learning vector

Qπ (s,a) = E π {∑infk=0gammakrt+k+1|st=s, at=a} [1]

The MORL consists of two classes of algorithms, single policy algorithm and multiple policy algorithm.

Single policy finds the single state to action mapping of an MDP formulation using multi agent

reinforcement learning. The multiple policy algorithms produce many solutions in form of policies of the

MDP formulation. [1]

Value function approximation [2]

Value Function Approximation deals with approximation of value function using another function, we

approximate the weight of value function using value function approximation which helps us to obtain

an accurate solution for large number of actions.

The aim is to estimate the value function with function approximation

vˆ(s,w) v π (s)

or qˆ (s,a,w) q π (s,a)

And to generalise from seen states to unseen states [2]

Update the weights of the value vectors dynamically (with the following formula)

V (S, W) = X(S)TW = E∑nJ=1XJ(S)wJ[2]

Objective function for W:-

J(w) = E π[(vπ(s) – x(S)Tw)2] [2]

update rule is particularly simple-

DERIVATIVE

Vˆ(s,w) = x(S)

∆w = α(v π(S) - vˆ(s,w))(x(S)) [2]

update = step size x prediction error x feature value.

We apply the above value approximation to the single policy and multiple policy algorithm.

Architecture diagram

REGULAR ISSUE

www.iioab.org | Gupta & Rajeshkannan 2017 | IIOABJ | Vol. 8 | 4 | 29–39 |

32

C
O

M
P

U
TE

R
 S

C
IE

N
C

E

Fig. 1: Modified single policy reinforcement learning algorithm.

………………………………………………………………………………………………………

Fig. 2: Modified multiple policy reinforcement learning algorithm.

………

METHODOLOGY

Modified single policy multi objective service composition

In the first algorithm, each QoS objective is implemented as a separate Q learning agent [1] at every state

& each agents selects its own such service (agent’s performance) that optimizes its own QoS objectives.

The relative gain is calculated obtained by agents in choosing its own web service to the reward obtained

by choosing the service recommended by other agent. The agents negotiates among themselves to reach

on optimum decision policy.

Our modified algorithm states that we assign a performance to the objective function by multiplying with its

weights. The optimum decision policy is calculated by choosing its action with maximum state action value

(reward). The weights are updated dynamically by using value function approximation in order to minimize

its least square error between its optimum decision value function and the current value function (current

REGULAR ISSUE

www.iioab.org | Gupta & Rajeshkannan 2017 | IIOABJ | Vol. 8 | 4 | 29–39 |

33

C
O

M
P

U
TE

R
 S

C
IE

N
C

E

iteration) which helps to iteratively achieve the optimal decision policy in a shorter time and provide

approximately accurate to a large no. of actions.(Fig 1)

First, we randomly choose an agent which selects an optimal action based on epsilon –greedy policy. The

remaining agents optimizes the remaining objective function assigned to them by calculating the relative

reward gained by choosing their choice to optimize the objective function assigned to them or following the

choice of the randomly chosen agent (single policy algorithm).

Modified single policy algorithm

The algorithm consists of the following steps

1. Agent negotiation (discussed above)

2. Weight updation

Function single_policy_algorithm() [1]

{

Choose a starting states from set of states

k=random integer between 1 to the no of actions

Re_k=0//maximum reward so far

Re_i=0 // maximum reward at each iteration

deltaW=0 //change in weight

gamma=0.01 //discount factor for reinforcement learning equation

epsilon=0.01 //error limit

ak=index of service with maximum re ward of agent k ‘s objective function

repeat

for all agents I except k do

{

t=maximum of agent_i ‘s objective function

 t2=W[agent_i]*(max-R_[s,ak,agent_i]) #agent negotiation relative reward //obtained when agent_i

choose his choice rather than following the choice of randomly //chosen agent

deltaW= alpha * (Re_k-t2)*(t2/W[agent_i]) //change in weight

W[agent_i]=W[agent_i]+(deltaW) #weight updation

if t2 > max3: //choosing max Re_i

{

 max3=t2

Re_i=t2

}

ifRe_i>Re_k : #in general case we keep Re_i for all agents except k

{ // if obtained reward is greater than maximum reward

 Re_k=Re_i

 k=agent_i #argmax(R_agent_i([s,a,agent_i]))

}

if delta < abs(Re_i-t): //convergence condition

delta= abs(Re_i-t)

if (delta < epsilon * (1 - gamma) / (gamma)) :

break

maxiter=maxiter+1

print ("Iteration No",maxiter)

if maxiter == 15:

break

}

If maxiter == 15:

break

}

Multiple policy multi-objective service composition

The multiple policy algorithm uses an exact method to solve the MDP formulation of the problem known as

value iteration is use to solve the problem, this is combined with dynamic programming which updates the

state value action vector by calculating the convex hull in 2 dimensions.

In multiple policy algorithm, we use value iteration and dynamic programming to calculate the convex hull

in 2 dimensions. We then choose the action which is optimal i.e., which has maximum value when we dot

product of the reward with weight .we update the state action value function according to value iteration

and weights according to value approximation. We have used availability and response time as parameters

as they are conflicting objective because when we supply wrong inputs to web service the availability is

positive and response time is negative.(Fig 2)

We compute the convex hull in 2 dimensions. There two objectives using the following equations→

1. Convex Hull(Union(Q(s’,a’))={q belongs to Q(s’,a’) | max {w.q}}

2. Q(s,a)=(1-alpha)Q(s,a) + alpha[r(s,a) + gamma* (Convex Hull(Union(Q(s’,a’)))]

REGULAR ISSUE

www.iioab.org | Gupta & Rajeshkannan 2017 | IIOABJ | Vol. 8 | 4 | 29–39 |

34

C
O

M
P

U
TE

R
 S

C
IE

N
C

E

3. W=w+delta(w)

Multiple policy multi-objective service composition algorithm

The algorithm consists of the following steps

1. Convex hull calculation (discussed above)

2. Value iteration

3. Weight updation

Function multiple_policy_algorithm() [2]

{

Initialize state action value function Q

epsilon=0.5 //error condition

max=0 //for convex hull

maxiter=0 //max iterations

Re_k=0 // maximum reward so far

total=asarray([0.5,0.5]) //weights (value function approximation)

for maxiter in range(0,T)

{

Initialize state variables s= random integer between 1 to the no of states

Calculate maximum reward from actions in next states

Max’= Convex Hull (Union(Q(s’,a’))={q belongs to Q(s’,a’) | max {w.q}}

Update q using the following formula:

Q(s,a)=(1-alpha)Q(s,a) + alpha[r(s,a) + gamma* (Convex Hull(Union(Q(s’,a’)))]

 Deltaw=w.dot(max(Union(Q[s’,a’])))

 W=w+deltaw

 S=s’

` if(s==send)

 {

 Break;}}}

Fig. 3: Flow diagrams of multiple policy reinforcement learning algorithm.

………

Fig. 4: Flow diagrams of single policy reinforcement learning algorithm.

………

REGULAR ISSUE

www.iioab.org | Gupta & Rajeshkannan 2017 | IIOABJ | Vol. 8 | 4 | 29–39 |

35

C
O

M
P

U
TE

R
 S

C
IE

N
C

E

Data Set (Table 1) is parsed using Data Set Parser. Inputs in form of vectors are passed to the modified

single policy reinforcement learning solver and modified multiple policy reinforcement learning solver.

From both the algorithms, we get the optimal decision policy (Fig. 3 and 4)

EXPERIMENT RESULTS AND ANALYSIS

We have considered the following dataset

Table 1: Sample QWS dataset with QOS parameters

Name of web service Availability Response
Time

Throughput Successability Reliability

MAPP Matching 302.75 89 7 90 73

MSSOAP INTEROP 482 85 16 95 73

STRIKE IRON 3321 89 1.39 96 73

HOLIDAY WEB SERVICE 126 98 12 100 67

GALEX 107 87 1.89 95 73

INTEROP 107 80 1.7 81 67

EMBOSS4 255 98 1.29 99 67

EMBL-EBI 136 76 2.79 76 60

SERVICEOBJECTS.COM 102 91 15.300 97 67

LEAD TOOLS 93 96 13.5 99 67

Single policy algorithm

Algorithm trace out

Agent negotiation and weight updation and accumulated reward

1. Agent negotiation relative reward obtained when agent_i choose his choice rather than following the

choice of randomly chosen agent

2. Reward updation

3. Weight updation

4. Choosing action with max reward

Index of web services with Maximum value of objective function: 2

delta W -3.50398068269

Re_i: 3.94629541198

Index of web services with Maximum value of objective function: 2

delta W 0.0

Re_i: 0.0

Index of web services with Maximum value of objective function: 2

delta W 0.0

Re_i: 0.0

Index of web services with Maximum value of objective function: 2

delta W 0.0

Re_i: 0.0

Index of web services with Maximum value of objective function: 2

delta W 0.0

Re_i: 0.0

Index of web services with Maximum value of objective function: 2

delta W 0.0

Re_i: 0.0

Index of web services with Maximum value of objective function: 2

delta W 0.0

Re_i: 0.0

Re_k: 3.94629541198

Iteration No 1

Accumulated Reward: 3.94629541198

and so on till convergence condition or till max iterations.

Multiple policy algorithm

The algorithm consists of the following steps:

1. Epsilon-greedy strategy:

2. Convex hull calculation

3. Value iteration

4. Weight updation

REGULAR ISSUE

www.iioab.org | Gupta & Rajeshkannan 2017 | IIOABJ | Vol. 8 | 4 | 29–39 |

36

C
O

M
P

U
TE

R
 S

C
IE

N
C

E

Algorithm trace out

Modified multiple policy algorithm with value function approximation

Maximum value of objective function: [[0.010160994923391649, 12.239028778368278,

0.72789115734524901, 1.0, 0.53846153846153844]]

Index of web services with Maximum value of objective function: [3]

Accumulated Reward: 162.072528122

Iteration No 1

Maximum value of objective function: [[0.010160994923391649, 12.239028778368278,

0.72789115734524901, 1.0, 0.53846153846153844], [0.004398966982931054,

38.41560588468586, 0.02721089075305546, 0.20833333333333334, 0.5384615384615384],

[0.013426147004615304, 50.0, 0.10204081599553161, 0.0, 0.0]]

Index of web services with Maximum value of objective function: [3, 5, 7]

Accumulated Reward: 541.358115854

Iteration No 2

Maximum value of objective function: [[0.010160994923391649, 12.239028778368278,

0.72789115734524901, 1.0, 0.53846153846153844], [0.004398966982931054,

38.41560588468586, 0.02721089075305546, 0.20833333333333334, 0.5384615384615384],

[0.013426147004615304, 50.0, 0.10204081599553161, 0.0, 0.0], [0.004398966982931054,

38.41560588468586, 0.02721089075305546, 0.20833333333333334, 0.5384615384615384],

[0.013426147004615304, 50.0, 0.10204081599553161, 0.0, 0.0]]

Index of web services with Maximum value of objective function: [3, 5, 7, 5, 7]

Accumulated Reward: 1200.85210952

Iteration No 3

Maximum value of objective function: [[0.010160994923391649, 12.239028778368278,

0.72789115734524901, 1.0, 0.53846153846153844], [0.004398966982931054,

38.41560588468586, 0.02721089075305546, 0.20833333333333334, 0.5384615384615384],

[0.013426147004615304, 50.0, 0.10204081599553161, 0.0, 0.0], [0.004398966982931054,

38.41560588468586, 0.02721089075305546, 0.20833333333333334, 0.5384615384615384],

[0.013426147004615304, 50.0, 0.10204081599553161, 0.0, 0.0], [0.004398966982931054,

38.41560588468586, 0.02721089075305546, 0.20833333333333334, 0.5384615384615384],

[0.013426147004615304, 50.0, 0.10204081599553161, 0.0, 0.0]]

Index of web services with Maximum value of objective function: [3, 5, 7, 5, 7, 5, 7]

Accumulated Reward: 1807.09099934

Iteration No 4

Maximum value of objective function: [[0.010160994923391649, 12.239028778368278,

0.72789115734524901, 1.0, 0.53846153846153844], [0.004398966982931054,

38.41560588468586, 0.02721089075305546, 0.20833333333333334, 0.5384615384615384],

[0.013426147004615304, 50.0, 0.10204081599553161, 0.0, 0.0], [0.004398966982931054,

38.41560588468586, 0.02721089075305546, 0.20833333333333334, 0.5384615384615384],

[0.013426147004615304, 50.0, 0.10204081599553161, 0.0, 0.0], [0.004398966982931054,

38.41560588468586, 0.02721089075305546, 0.20833333333333334, 0.5384615384615384],

[0.013426147004615304, 50.0, 0.10204081599553161, 0.0, 0.0], [0.013426147004615304, 50.0,

0.10204081599553161, 0.0, 0.0]]

Index of web services with Maximum value of objective function: [3, 5, 7, 5, 7, 5, 7, 7]

Accumulated Reward: 2468.55487898

Parameter Meaning Value

Alpha learning rate 0.1

Gamma discount factor 0.01

The experiments results were to examine the ability of the hybrid algorithm. results are as follows:

1-Singly policy reinforcement learning algorithm

2-improved algorithm

REGULAR ISSUE

www.iioab.org | Gupta & Rajeshkannan 2017 | IIOABJ | Vol. 8 | 4 | 29–39 |

37

C
O

M
P

U
TE

R
 S

C
IE

N
C

E

Fig. 5: Modified single policy vs single policy algorithm.

……

As you can see in the above chart, the accumulated reward for modified single policy algorithm is greater

than the accumulated reward for original algorithm. This is true for each iteration, thus the quality of

solutions obtained by Modified single policy algorithm is greater than single policy algorithm.(Fig 5)

Thus the modified algorithm yield better results than original algorithm

1-Multiple policy reinforcement learning algorithm

2-improved algorithm

Fig. 6: Multiple policy algorithm vs modified multiple policy algorithms.

……

As you see in the above chart the accumulated reward for modified multiple policy algorithm is greater

than the accumulated reward algorithm for original multiple policy algorithm. This is true for each iteration,

thus the quality of solutions obtained by Modified multiple policy algorithm is greater than multiple policy

algorithm.(Fig 6)

Fig. 7: No of solutions in single policy algorithm an multiple policy algorithms.

……

As you can see from the above chart, the no of solutions obtained in multiple policy algorithms is greater

than no of solutions obtained in single policy algorithm. Thus, multiple policy algorithms is better than

single policy algorithm. Thus, we can obtain multiple solutions to the same problem in multiple policy

algorithms as compared to single policy algorithm.(Fig 7)

REGULAR ISSUE

www.iioab.org | Gupta & Rajeshkannan 2017 | IIOABJ | Vol. 8 | 4 | 29–39 |

38

C
O

M
P

U
TE

R
 S

C
IE

N
C

E

CONCLUSION

We propose modified reinforcement learning algorithm, the result have shown that the modified

reinforcement learning algorithm is more effective than the original algorithm for selecting a web services

in a pervasive environments. The future work is to further modify learning algorithm to achieve better

results. The effectiveness of the proposed reinforcement learning algorithm is shown in the results.

The scenario addressed by single policy algorithm is that we have partially observable environment and we

want to find the optimal state of action mapping of the MDP formulation of the problem .This is single in

number in single policy algorithm .The scenario addressed by multiple policy algorithm is that we want to

find multiple solutions to the MDP formulation of the problem. The future work involves optimization of the

value function approximation technique to yield better results.

CONFLICT OF INTEREST
The authors have no competing conflicts of interest.

ACKNOWLEDGEMENTS
I am thankful to Prof. Rajeshkannan R. and VIT University for supporting me in this project.

FINANCIAL DISCLOSURE
There has been no financial investment in the project.

AUTHOR CONTRIBUTION
This research was done by Deepak Gupta under the guidance of Prof. R. Rajeshkannan.

REFERENCES

[1] Moustafa A, Zhang M. [2013] Multi-objective service

composition using reinforcement learning. International

Conference on Service-Oriented Computing 2013 Dec 2.

Springer Berlin Heidelberg. 298-312

[2] Geist, Matthieu, Olivier Pietquin. [2010] A brief survey of

parametric value function approximation. Rapport

interne, Supélec.

[3] Grossmann I. [2002] Review of nonlinear mixed-integer

and disjunctive programming techniques. Optimization

and Engineering. 3(3):227–252.

[4] Sreenath RM, Singh MP. [2004] Agent-based service

selection. In Web Semantics: Science, Service and Agents

on the World Wide Web. 261-279.

[5] Parejo JA, Segura S, Fern´andez P, Ruiz-Cort´es A. [2014]

QoS-aware 940 web services composition using GRASP

with Path Relinking. Expert Systems with Applications,

41:4211–4223. URL: http://dx.doi.org/10.1016/

j.eswa.2013.12.036. doi:10.1016/j.eswa.2013.12.036.

[6] Zitzler E. [1999] Evolutionary algorithms for multi

objective optimization: Methods and applications.

Doctoral thesis ETH NO. 13398, Zurich: Swiss Federal

Institute of Technology (ETH), Aachen, Germany: Shaker

Verlag

[7] Knowles J, Corne D. [1999] The Pareto archived evolution

strategy: A new baseline algorithm for multi objective

optimisation. Proceedings of the 1999 Congress on

Evolutionary Computation, Piscatway: New Jersey: IEEE

Service Center. 98–105.

[8] Rudolph G. [1999] Evolutionary search under partially

ordered sets. Technical Report No. CI-67/99, Dortmund:

Department of Computer Science/LS11, University of

Dortmund, Germany

[9] Hamadi R, Benatallah B. [2003] A Petri net-based model

for web service composition. ADC '03: Proceedings of the

14th Australasian database conference. Darling hurst,

Australia, Australian Computer Society, Inc.191—200.

[10] Fu Y, Zhijiang D, Xudong H. [2006] Modeling, validating

and automating composition of web services. ICWE '06:

Proceedings of the 6th international conference on Web

engineering, New York, NY, USA, 2006. ACM. 217—224.

[11] Maximilien EM, Singh MP. [2005] Multi agent System for

Dynamic Web Services Selection. Proc. Int. Conf. Auton.

Agents and Multi-Agent Syst.

[12] Kalasapur S, Kumar M, Shirazi BA. [2007] Dynamic

service composition in pervasive computing. In

Proceedings of the IEEE Transactions on Parallel and

Distributed Systems (TPDS). 907–918.

[13] Hashemain SV. Mavaddat F. [2005] A graph-based

approach to web services composition. In Proceedings of

the 2005 IEEE/IPSJ International Symposium on

Applications and the Internet (SAINT). 183–189.

[14] Raman B, Katz RH. [2003] An architecture for highly

available wide-area service composition. Computer

Communications. 26(15):1727–1740.

[15] Gu X, Nahrstedt K, Yu B. [2004] Spider Net: An integrated

peer-to-peer service composition framework. In

Proceedings of the 13th IEEE International Symposium on

High performance Distributed Computing. 110–119.

[16] Sonia Ben Mokhtar, Nikolaos Georgantas, Valerie Issarny.

[2005] Ad hoc composition of user tasks in pervasive

computing environments.In Proceedings of the 4th

Workshop on Software Composition (SC 2005).

Edinburgh, UK. LNCS 3628.

[17] Sonia Ben Mokhtar, Jinshan Liu, Nikolaos Georgantas,

Valerie Issarny. QoS-aware dynamic service composition

in ambient intelligence environments. Submitted for

publication.

[18] Brogi A, Corfini S, Popescu R. [2005] Composition-

oriented service discovery. In Proceedings of the 4th

Workshop on Software Composition. Edinburgh. UK. LNCS

3628

[19] Harry Chen, FilipPerich, Timothy W, Finin, Anupam Joshi.

[2004] Soupa: Standard ontology for ubiquitous and

pervasive applications. In MobiQuitous. IEEE Computer

Society .258–267.

[20] Dey A, Salber D, Abowd G. [2001] A conceptual

framework and a toolkit for supporting the rapid

prototyping of context-aware applications. In Human-

Computer Interaction. 16:97–166.

[21] Howard Foster, Sebastian Uchitel, Jeff Magee, Jeff

Kramer. [2003] Model-based verification of web service

compositions. In IEEE International Conference on

Automated Software Engineering.

[22] Koshkina M, van Breugel F. [2003] Verification of

business processes for web services. Technical report,

York University.

[23] Seng Wai Loke. [2004] Logic programming for context-

aware pervasive computing: Language support,

characterizing situations, and integration with the web. In

Web Intelligence, IEEE Computer Society. 44–50.

REGULAR ISSUE

www.iioab.org | Gupta & Rajeshkannan 2017 | IIOABJ | Vol. 8 | 4 | 29–39 |

39

C
O

M
P

U
TE

R
 S

C
IE

N
C

E

[24] Zakaria Maamar, Soraya Kouadri, Hamdi Yahyaoui.

[2004] A web services composition approach based on

software agents and context. In SAC ’04: Proceedings of

the 2004 ACM symposium on Applied computing, New

York, NY, USA. ACM Press. 1619–1623.

[25] Shalil Majithia, David W, Walker, Gray WA. [2004] A

framework for automated service composition in service-

oriented architecture. In 1st European Semantic Web

Symposium.

[26] Bazgan C, Hugot H, Vanderpooten D. [2009] Solving

efficiently the 0–1 multi-objective knapsack problem.

Computers & Operations Research. 31:36(1):260-279.

[27] A Petri Net-based Model for Web Service Composition

Rachid Hamadi Boualem Benatallah

[28] Howard RA. DYNAMIC PROGRAMMING AND MARKOV

PROCESSES

[29] QoS AWARE FORMALIZED MODEL FOR SEMANTIC WEB

SERVICE ELECTION

[30] Divya Sachan1, Saurabh Kumar Dixit1, and Sandeep

Kumar1 Department of Electronics and Computer

Engineering, Indian Institute of Technology Roorkee,

Roorkee, India.

