
SPECIAL ISSUE: Emerging Technologies in Networking and Security (ETNS)
Narayanan and Arun

| Narayanan and Arun 2016 | IIOABJ | Vol. 7 | 9 | 89-96 89

 w
w

w
.iio

a
b

.o
rg

 w

w
w

.iio
a
b

.w
e
b

s
.c

o
m

C

O
M

P
U

T
E

R
 S

C
IE

N
C

E

DISTRIBUTED POLICY TRACKING IN WIRELESS SENSOR NETWORKS USING
PARALLEL EXECUTION OF TINYPOLICY OVER P2P NETWORKS’ LIVE
STREAMING VIDEO ON-DEMAND SERVICE
Madeshan Narayanan1,2* and Chokkalingam Arun3

1Department of Computer Science and Engineering, Sathyabama University, Chennai, INDIA
2Department of CSE, Saveetha University, Chennai, Tamil Nadu, INDIA
3Dept of Electronics and Communication Engineering, RMK College of Engineering and Technology, Chennai, Tamil
Nadu, INDIA

ABSTRACT

*Corresponding author: Email: narayanan_baba@yahoo.com; Tel.: +91 9381485813

INTRODUCTION

Wireless sensor networks (WSNs) are built for a variety of purposes. Their chief drawback, however, is that their
parts have limitations in terms of processing and power. As a result, managing difficult algorithms with information
collected by sensors ought to be made in modules outside the WSN. Application design could be a lot more flexible
with the introduction of P2P networks. This can surmount the challenges usually related with WSNs as mentioned
earlier. However, the design of distributed systems design is a challenging job, with a host of issues relating to
communication between components.

In developing applications, P2P networks are a match for WSNs. While P2P networks are better suited for high-end
nodes with substantial power, WSNs are well suited for capturing the surrounding information in intense conditions.
The challenge is to integrate these architectures to cooperate for functionality’s sake.

WSNs play an important role in many systems, assisting people in their usual day-to-day routines and getting them
acclimatized to their present circumstances. But they are required to manage all by themselves to discover and
configure tools for services, detect and respond to attacks, resolve faults and reconfigure the system to diminish all
of these.

Based on the assessments of object attributes, a policy proclaims to choose target objects inside a domain. When all
the objects in a domain can be applied by a policy, the simplest case arises. Domain membership can vary invariably
and, consequently, a group of objects where the policy is applicable has to be examined during policy interpretation.

 Peer-to-Peer Networks (P2P) play a vital role in all major domains today. This paper discusses how P2P
network services are extended to wireless sensor networks (WSNs). In a sensor node’s local memory,
Policy-based management applications can store only a restricted number of policies in the local memory
of a sensor node on WSNs, subject to hardware resource constraints, and are required to be recycled
whenever extra policies are needed. To handle these issues, an operation called Parallel Execution of
TinyPolicy is developed for storing, locating, accessing and executing policies in a WSN. It is devised to
make full use of the memory available in a P2P network and duplication. The result is a more robust
policy system against any failure of nodes and single points. To govern and control the embedded
devices, the parallel execution of TinyPolicy will facilitate WSNs to solve these difficult issues. Utilizing a
P2P architecture, distributed policy-based management and replication of policies, the new framework
offers several novel features like dynamic distribution of policies between the sensor nodes. Additionally,
the parallel execution of TinyPolicy manages the location of these policies dynamically by thrusting the
widely-used policies against the target node, instead of leaving them solitarily in the WSN. This
framework is simulated by an NS-2 simulator. In the near future, a WSN-and-P2P system combination
may be a guide to developing robust applications. A P2P platform provided by an abstract program for
communicating and allowing developers to take charge of functionality is a sign of simplifying the
development process of distributed applications.
.

Distributed Systems; P2P
Networks; Parallel Execution;
TinyPolicy; Wireless Sensor

Networks

KEY WORDS

ISSN: 0976-3104

ARTICLE OPEN ACCESS

| Guest Editor | Prof. B. Madhusudhanan |

Published on: 08th– August-2016

SPECIAL ISSUE: Emerging Technologies in Networking and Security (ETNS)
Narayanan and Arun

| Narayanan and Arun 2016 | IIOABJ | Vol. 7 | 9 | 89-96 90

 w
w

w
.iio

a
b

.o
rg

 w

w
w

.iio
a
b

.w
e
b

s
.c

o
m

C

O
M

P
U

T
E

R
 S

C
IE

N
C

E

An illustration of a management authorization policy is the access rule, which indicates a connection between
managers and managed objects in relation to managing operations allowed on objects of a certain kind. The rule also
utilizes the scope to choose subsets of objects and, further, describe restrictions on these actions.

By stating why an object has been selected, a manager can indicate the primary membership for exploring a database
of a different domain, except this is not offered as component of essential domain service. Policy membership is
then required to restrict objects that can be consequently built into the domain or added from another. Additional
membership policies are linked to the number of objects allowed in a domain.

A robust mobility-management structure for Internet Protocol version 6 (IPv6) and heterogeneous wireless
networks, enabled by policy enforcement, is proposed. Policies are defined, based on infrastructure facility, service
agreement and conciliation results. The results of the system’s performance confirm that user experience has
improved, largely in relation to connectivity. Service providers will therefore be able to hire expensive UMTS
economically, and users will always be connected anytime, so long as the distribution of the flow and the selection
of the network is visible and flexible [1,14].

This paper is organized in the following manner: In Section II, a step-by-step literature survey related to P2P
network services on wireless sensor networks is tabled. In Section III, the proposed model for the parallel execution
of TinyPolicy is presented. Details of the experimental results and implementation are presented in Section IV. The
final section contains the conclusion and future extensions of the paper.

LITERATURE REVIEW

WSNs (Wireless sensor networks) have become all-encompassing in day to day life, penetrating into fields like
environment, medicine and defence studies. Every WSN comprises of a number of sensors which are accountable
for monitoring single or multiple events. A WSN generally operates in various environments where sensors are
obtained from several manufacturers which lead to incompatible issues with respect to standards in hardware and
software. Even though specific types of sensors may overcome a few of these issues, it comes at a cost with
complexity issues. Researchers have, consequently, recommended policy-based management (PBM) platforms as a
suitable solution to trounce these challenges and effectually camouflage the complicated workings behind basic
network devices.

A starfish framework in sensor nodes targets self-healing policy deployment. The framework comprises a Finger2
policy system for dynamically adapting a library module to make programming the essential functions of nodes less
complex, as well as a client-side editor to manage policies. The policies described are for a health-care body
network, with self-healing features for sensor networks and re-configuring policies to handle faults. There is also an
intention to broaden the concept of self-healing services and incorporate them in self-managed cell architecture [1].
A model based on a policy understanding the concerns of the several actors involved in practical WSN applications
is recommended, achieved by enhancing and optimizing the runtime environment. A sample implementation of the
model is implemented and examined, using the SunSPOT platform. The results show that the model is adequately
lightweight and can be applied with great advantage in WSN environments. The focus will also be on interaction
with several parallel programming models [2-3].

Managing several sensor nodes is a daunting task where energy concerns are an associated factor. Though numerous
network structuring methods have been suggested, a system to cover the entire structure has yet to be recommended.
A management setup for WSNs, known as the SNOWMAN framework, is built to address these shortcomings. It
uses an approach based on a policy that lets sensor nodes organize and administer themselves independently. The
effectiveness of this model is scrutinized using an NS-2 simulator. The results show that the suggested model
permits lesser energy consumption and a longer lifetime than currently existing methods like the LEACH and
LEACH-C [4].

Business-level operators can use methods like a policy-based network management (PBNM) to inscribe SLAs in a
comprehensible interface without making changes to the codes executed in the controllers. A system for policy
authoring to ease the process of configuring SDN architecture is set up. The framework aims at helping business-
level operators easily indicate service needs, offer flexibility and permit the said operator to accept or reject
suggestions. Even if the QoS classes increase, the toolkit functions well and within the intricacies of SLAs [5].

SPECIAL ISSUE: Emerging Technologies in Networking and Security (ETNS)
Narayanan and Arun

| Narayanan and Arun 2016 | IIOABJ | Vol. 7 | 9 | 89-96 91

 w
w

w
.iio

a
b

.o
rg

 w

w
w

.iio
a
b

.w
e
b

s
.c

o
m

C

O
M

P
U

T
E

R
 S

C
IE

N
C

E

This paper compares, in different M2M environments, the performance of every PHY mode for IEEE 802.15.4g
(SUN) and IEEE 802.11 (Wi-Fi P2P) WSNs. Performances, in terms of various configurations, were examined. The
outcome shows that IEEE 802.11 is more susceptible than IEEE 802.15.4g in shadowing channels, relative to the
AWGN channel. Hence, the FSK in IEEE 802.15.4g is promising. Whereas, in multipath fading channels, the
performance of IEEE 802.11 was superior to that of IEEE 802.15.4g. On the basis of a suitable performance, 𝐸𝑏/𝑁0,
coverage of service and channel surroundings, an appropriate communication channel can be chosen [6].

CaPI (component and policy infrastructure), a dynamic component that can be reconfigured and acts as a piece of
middleware for wireless sensor networks, is presented. CaPI offers two ideas for modern sensor network
development and administration. One model encourages embedded developers, while the other supports managing
and specifying behavioral apprehensions by managers or domain specialists. CaPI also allows successful
customization and active re-configuration of the function and performance of applications. Runtime editions can be
ratified effectively because of the survival of fine-grained and coarse-grained methods [7].

There are only a few protocols built for WSNs that are examined on real test beds. WSNs encounter challenges in
the form of restricted power supply, little storage capacity, and connectivity problems. The virtual cord protocol
(VCP) that utilizes P2P techniques is used for managing information in a WSN and offers effective resource usage.
The execution and operation of the VCP as it reveals its performance in a real-time situation using Mica2 motes is
discussed here, displaying how a P2P approach can be applied on WSNs for efficient data transport and
management [8].

Based on the CIM policy model, a policy management for autonomic computing (PMAC) platform is developed.
We provide here the PMAC platform’s outline and how it can be utilized in managing network systems. The policy
information model accepted by PMAC, and the model for communication between the resource and the policy
manager, is presented. The key mechanisms of PMAC - for creating a policy, storing, evaluating and enforcing - are
also presented, along with realistic applications of PMAC in managing networks [9].

Managing various nodes in huge numbers is always a tough task. A framework for a safe and policy-based
administration of assorted resource-hampered networks of embedded systems is considered. Priority is given to the
security of corresponding requests and responses. Messages are transmitted on a web-based approach and,
additionally, provided a range of options for secure transmission. The methods used for this purpose depend on the
application’s requirements [10].

The design and execution of a management system known as SRM (sensor reliability management) for managing
the reliability of data in WSNs are explained here. Though designed largely for managing the reliability of the data,
it can be simply incorporated in various management services. SRM is made up of modules like user policy
specification, evaluation, decision-making and action.

SRM further permits network administrators to communicate with the network by offering management policies.
Results prove that SRM not only satisfies reliability requirements, but also decreases energy consumption by half
[11].

It is hard to identify, access and administer a sensor node since WSNs normally work in dissimilar environments.
There is, consequently, a need to surmount these challenges. The purpose here is to develop a new framework for
managing policies in WSNs in a distributed fashion. The proposed work focuses on extending the functionality of
WSN management by increasing policy numbers in WSN storage. It also masks the intricacies of policy
management processes from users by streamlining those procedures [12]. Wireless sensor networks (WSNs) have
inadequate hardware resources, thereby restricting management capabilities and causing volatility and irregularity in
the system. The purpose of this work is to build a novel framework for policy-based management for wireless sensor
networks (WSNs) to surmount the shortcomings of the current policy-based WSN platforms. The framework
comprises major software elements like the monitor, LPDP (local policy decision point), PEP (policy enforcement
point), and a set of integrated applications. The framework also consists of a 6-data warehouse [13].

WSN components have restrictions relating to power and processing. As a result, running complex algorithms has to
be done using external components. Therefore, we present an amalgamation of WSNs and P2P networks to build
systems relying on WSN functions. A programming concept is proposed that permits developers to focus on the
operation of the developing method. Using feedback loops as a design tool, and the development of the concept’s
components, are also suggested. Further, they are required to be compatible, extensible and lowly-fixed [15].

SPECIAL ISSUE: Emerging Technologies in Networking and Security (ETNS)
Narayanan and Arun

| Narayanan and Arun 2016 | IIOABJ | Vol. 7 | 9 | 89-96 92

 w
w

w
.iio

a
b

.o
rg

 w

w
w

.iio
a
b

.w
e
b

s
.c

o
m

C

O
M

P
U

T
E

R
 S

C
IE

N
C

E

One of the key components of WSNs is PBMS (policy-based management systems). Owing to hardware resource
limitations, only a partial number of policies can be stored in a sensor node’s local memory by policy-based
management applications on WSNs, needing to be recycled if extra policies are needed. To handle this particular
issue, a framework known as TinyPolicy is built using a P2P policy storage and operating system called PolicyP2P.
It is developed to make use of the memory available on the network as a result of which the policy mechanism is
tougher against failure of nodes and solo failure points [16].

PROPOSED MODEL ON PARALLEL EXECUTION OF TINYPOLICY

The novel policy creation method is started via a policy-user interface on a system connected to the WSN’s source
peer, which is a highest-level node in the P2P hierarchy address structure. Normally, this peer is the WSN’s gateway
node and possesses ample power and memory.

Figure-1 represents the Proposed Model for Parallel Execution of TinyPolicy Diagram and the directions for
making such a policy are also described. Once the policy is generated by utilizing the Policy GUI, the source peer
employs the P2P software part to establish a host node address for the policy. It executes this by building a policy
key (policy ID = event ID + sequence ID + session ID) and then messing the policy key to fit inside the sensor
network’s address space. The source peer’s monitor will push the hashed policy key against the node with the best
matching address.

After the triggering process, policies are executed in a parallel mode, having already been simplified into
minuscules. Policy execution starts once the policy request is made from the required node. The request generally
happens from the root node or a remote adjacent node. If it does not exist, the request is then forwarded to the next
node and likewise to the root node. Two types of policy repositories are available in this system: a dependent policy
repository and an independent policy repository. A dependent policy repository contains dependent policies. For
example, a policy ‘A’ writes two lines in a particular node and policy ‘B’ writes an additional two lines in that node
(with the first two lines of ‘A’ and the next two new lines of ‘B,’ we consider that A and B are dependable). If the
requested policy is dependable, it searches the dependable repository and if it is undependable, it searches the
undependable repository. The requesting time and search time, consequently, are minimized. The question then
arises as to how to ascertain whether or not the requested policy is dependable or undependable.

Fig:1. Proposed Model for Parallel Execution of TinyPolicy Diagram

…….

Policy Creation

Policy ID = Event ID + Sequence ID + Session ID

SPECIAL ISSUE: Emerging Technologies in Networking and Security (ETNS)
Narayanan and Arun

| Narayanan and Arun 2016 | IIOABJ | Vol. 7 | 9 | 89-96 93

 w
w

w
.iio

a
b

.o
rg

 w

w
w

.iio
a
b

.w
e
b

s
.c

o
m

C

O
M

P
U

T
E

R
 S

C
IE

N
C

E

 = (28+1) x (28+1) + 28+1 + 2 byte
= 66049 + 257 + 2 byte
= 2 byte + 1 byte + 2 byte = 5 byte

Event Id – sub task
Sequence Id – 10 kb ----each 10kb send to
Session id: up completing one work

RESULT AND IMPLEMENTATION

Tiny Policy Implementation

We consider 25 nodes in NS-2 simulation. Nodes that try actions such as receiving, sending or storing data need
policies. Policies have already been stored in two types of storage areas, dependable and undependable data sources.
If a node needs a policy to perform an action, it requests a neighbor node. This request is forwarded to the root node
via intermediate nodes. The policy filter module also works to detect whether or not the policy already exists in the
intermediate node. If it exists, then it simply forwards the request to the policy hold node; otherwise, it forwards it to
the root node. The policy filter also checks whether the required policy is in dependable storage or in undependable
storage. The policy is now executed parallelly, with the time taken for overall execution of the policy reduced. The
result obtained in this simulation is tabulated below.

Policy Replacement

Consider a case where the root node sends a video file to the request node at time t1. At that point in time, the root
node creates a policy with a session id and destination id. A node requesting the same video file after a while is
considered to be at time t2. Now, since the policy is the same, simply update it with the name of the session id and
destination id, the policy being stored in two repositories, dependable and undependable. Dependable means that the
policy regards current action while undependable means that it does not. Old policies, consequently, are stored in
undependable repositories from which a policy can be taken and simply updated with the session id and destination
id. This architecture helps in reusing, with certain modifications, policies.

According to the policy structure, we can easily update a current policy from an old one.
To update an old policy, we use a pattern-matching algorithm. The [Table- 1] represents parameter and size, the
[Table- 2] shows policy table with action and data size.

Table: 1.Parameter and Size

 Frequent and Closed Patterns

Table: 2. Policy table with action and data size

Policy Action Data size

P1 A1 D1

P2 A1 D2

P3 A1 D1

P4 A2 D2

Pn An Dn

Policy Structure Data size

[ID] Policy id 5 byte

[IF] Policy condition 3 byte

[THEN] |Do Policy Action 3 byte

[END] End Policy Execution 1 byte

[NEXT] Execute Next Policy 3 byte

SPECIAL ISSUE: Emerging Technologies in Networking and Security (ETNS)
Narayanan and Arun

| Narayanan and Arun 2016 | IIOABJ | Vol. 7 | 9 | 89-96 94

 w
w

w
.iio

a
b

.o
rg

 w

w
w

.iio
a
b

.w
e
b

s
.c

o
m

C

O
M

P
U

T
E

R
 S

C
IE

N
C

E

Where A1, A2, A3 …An is action, D1, D2, D3….Dn
 Is data size, and P1, P2, P3….Pn is policy.
Both P1 and p3 are equal. Notwithstanding the fact that they are equal, they do not create p3, since P3 is an existing
policy

Frequent pattern covering set

Table: 3. Mapping, destination and frequent action

Frequent Pattern Destination

{ A1, A2,A3} { d1, d2, d3…..dn }

{ A2} { d2, d3…..dn }

{ A2,A3} { d1, d3…..dn }

Wherein A1, A2, A3…An is action and d1, d2, d3….dn
Is destination. The [Table- 3] shows mapping of destination and frequent pattern.

Determining the Requested Policy Existence

FREQUENT and CLOSED PATTERNS
TERMSET(Y) = {t/¥ dn ζ Y dn}
CLOSURE of X is defined
CLOSURE(X) = TERMSET(X1)
A PATTERN X; if, and only if, X = CLOSURE(X)
Let X be a CLOSED PATTERN.
We can prove that
supa(X1)<supa(X)
FOR all PATTERNS X1 ᴝ X; OTHERWISE, if supa(X1)=supa(X)
We have X11=X1
Wherein supa(X1) and supa(X) are the total support of PATTERN X1 and X.
Also we have
CLOSURE(X) = TERMSET(X1) = TERMSET(X11) ᴝ X1 ᴝ X
That is, Closure(X) ≠ X.

Evaluation of policy in terms of number and time

Table: 4. Evaluation of the Policy in Terms of Number and Time

Number of
policy

Evaluation time
(traditional method)

Evaluation time
(proposed method)

0 0.6 0.2

1 1.2 1.1

2 1.4 1.6

3 2.2 1.8

4 3.2 2.0

5 3.8 2.6

6 4.2 3.1

7 4.8 3.5

8 5.2 4.1

9 5.7 4.6

10 6.2 5.1

SPECIAL ISSUE: Emerging Technologies in Networking and Security (ETNS)
Narayanan and Arun

| Narayanan and Arun 2016 | IIOABJ | Vol. 7 | 9 | 89-96 95

 w
w

w
.iio

a
b

.o
rg

 w

w
w

.iio
a
b

.w
e
b

s
.c

o
m

C

O
M

P
U

T
E

R
 S

C
IE

N
C

E

[Table- 4] represents the evaluation of the policy in terms of number and time. This graph mentions the time of
execution in traditional methods and the proposed method between TinyPolicies. Figure-2 shows 5 traditional
policies completed within 3.8 seconds but 5 proposed policies completed within 2.6 seconds; and 10 traditional
policies completed within 6.2 seconds, with 10 proposed tiny policies completed within 5.1 seconds. An overall
indication from the graph is that parallel execution increases the number of policies within a given time, also helping
increase the overall performance of the system.

Evaluation of the policy in terms of size and implementation time

[Table- 5] represents the evaluation of the policy in terms of its size and implementation time. Figure-3 mentions
the time of execution between TinyPolicies in traditional methods and the proposed method. It shows that 200-byte
sized traditional policies completed within 0.2 seconds, but 300 bytes of policies completed within 2.6 seconds, in
both cases. 1000 traditional policies completed within 2.0 seconds and, similarly, 10 proposed TinyPolicies
completed within 5.1 seconds. In 5.2 seconds, we discover that both cases have nearly 1000 different policies
executed between them. An overall indication from the graph is that parallel execution increases the number of
policies within a given time, also helping increase the overall performance of the system.

Table: 5.Evaluation of the Policy In Terms Of Size and Execution Time

Policy size
(byte)

Evaluation time
(traditional method)

Evaluation
time

(proposed
method)

200 0.6 0.2

300 1.2 1.1

500 1.4 1.6

700 2.2 1.8

1000 3.2 2.0

1200 3.8 2.6

3000 4.2 3.1

3200 4.8 3.5

3600 5.2 4.1

4000 5.7 4.6

5000 6.2 5.1

CONCLUSION

An extension of the services of P2P networks for wireless sensor networks (WSNs) is evaluated in this paper. The
downside of WSNs is that their components are restricted in terms of power and processing, due to which policy-
based WSN administration applications can only store a particular amount of policies in the limited memory of
sensor nodes. Challenging concerns in relation to govern and control the embedded devices can be resolved by
WSNs with the help of the parallel execution of TinyPolicy. P2P networks are fairly flexible in designing
applications and can address most of the problematic issues that confront WSNs. Integration could be the key
challenge, between these architectural structures, for cooperating in a specific functionality. The new structure uses
P2P architecture, distributed policy-based management and a replica of policies for dynamically distributing policies
between sensor nodes, a feature supported by this framework. The location of policies can also be managed
dynamically. The framework is simulated using the NS-2 simulator. For simulation, 25 nodes are considered. A
node planning to perform actions like receiving, sending or storing data requires policies, usually stored in two types
of storage: dependable and undependable. Nodes request a neighbor node for a policy to execute an action. This
request is then forwarded to the root node through intermediate nodes. The policy filter module detects whether or
not the policy already exists in the intermediate node. It also examines if the policy is in dependable or
undependable storage. In future, a combination of WSNs and P2P computing may result in the development of
robust applications. From a future perspective, we intend to move towards parallel steps to find the existing policy
and a new design, with whichever being completed first taking effect. The algorithm will be designed with the same
perspective as well.

SPECIAL ISSUE: Emerging Technologies in Networking and Security (ETNS)
Narayanan and Arun

| Narayanan and Arun 2016 | IIOABJ | Vol. 7 | 9 | 89-96 96

 w
w

w
.iio

a
b

.o
rg

 w

w
w

.iio
a
b

.w
e
b

s
.c

o
m

C

O
M

P
U

T
E

R
 S

C
IE

N
C

E

ACKNOWLEDGEMENT

We would like to express my deepest gratitude to Saveetha School of Engineering; the Management of Saveetha University; the Principal and Head
of the Department of Computer Science & Engineering.

CONFLICT OF INTEREST
No conflict of interest

FINANCIAL DISCLOSURE
No financial support was received to carry out this project.

REFERENCES

[1] Shen, Chong, Wencai Du, Robert Atkinson, and Kae Hsiang

Kwong. [2012]Policy based mobility & flow management for

IPv6 heterogeneous wireless networks. Wireless Personal

Communications 62(2): 329-361.

[2] Matthys, Nelson, Christophe Huygens, Danny Hughes, Jó

Ueyama, Sam Michiels, and Wouter Joosen.[2011] Policy-driven

tailoring of sensor networks. In Sensor Systems and Software, pp.

20-35. Springer Berlin Heidelberg,

[3] Bourdenas, Themistoklis, and Morris Sloman.[2010] Starfish:

policy driven self-management in wireless sensor networks. In

Proceedings of the 2010 ICSE Workshop on Software

Engineering for Adaptive and Self-Managing Systems, pp. 75-83.

ACM,.

[4] Si-Ho, CHA, LEE Jong-Eon, JO Minho, Hee Yong Youn, KANG

Seokjoong, and CHO Kuk-Hyun. [2007]Policy-based

management for self-managing wireless sensor networks. IEICE

transactions on communications 90(11) :3024-3033.

[5] Machado, Cristian Cleder, Juliano Araujo Wickboldt, Lisandro

Zambenedetti Granville, and Alberto Schaeffer-Filho.[2015]

Policy authoring for software-defined networking management.

In Integrated Network Management (IM), 2015 IFIP/IEEE

International Symposium on, IEEE pp. 216-224.

[6] Oh, Eui-Suk, Seong-Hee Lee, Seong-Hyeong Lee, and Seung-

Hoon Hwang.[2015] Comparison of SUN and Wi-Fi P2P WSN in

M2M Environments. International Journal of Distributed Sensor

Networks 501 (2015): 791849.

[7] Matthys, Nelson, Christophe Huygens, Danny Hughes, Sam

Michiels, and Wouter Joosen.A component and policy-based

approach for efficient sensor network reconfiguration. In Policies

for Distributed Systems and Networks (POLICY), 2012 IEEE

International Symposium on, pp. 53-60. IEEE, 2012.

[8] Sahar, Syeda Nida, Faisal Karim Shaikh, and Sana Hoor

Jokhio.[2011] P2P based Data Management WSNs: Experiences

and Lessons Learnt from a Real-world Deployment. Mehran

University Research Journal of Engineering & Technology 30(4)

[9] Agrawal, Dakshi, Kang-Won Lee, and Jorge Lobo. [2005]Policy-

based management of networked computing systems.

Communications Magazine, IEEE 43(10) :69-75.

[10] Rantos, Konstantinos, Alexandros Papanikolaou, Konstantinos

Fysarakis, and Charalampos Manifavas.[2012] Secure policy-

based management solutions in heterogeneous embedded systems

networks. In Telecommunications and Multimedia (TEMU), 2012

International Conference on, pp. 227-232. IEEE.

[11] Le, Tuan D, Wen Hu, Sanjay Jha, and Peter Corke.[2008] Design

and implementation of a policy-based management system for

data reliability in wireless sensor networks. In Local Computer

Networks, 2008. LCN 2008. 33rd IEEE Conference on, pp. 762-

769. IEEE.

[12] Qwasmi, Nidal, and Ramiro Liscano. [2012]Framework for

Distributed Policy-Based Management in Wireless Sensor

Networks to Support Autonomic Behavior. Procedia Computer

Science 10 : 232-239.

[13] Qwasmi, Nidal, and Ramiro Liscano. "Distributed Policy-Based

Management for Wireless Sensor Networks. Procedia Computer

Science 10 (2012): 1208-1212.
[14] C. Rajan, N. Shanthi, “Swarm optimized multicasting for wireless

network”, Life Sci. J, Vol.4, No. 10, 2013.

[15] Gutierrez, German, Boris Mejías, Peter Van Roy, Diana Velasco,

and Juan Torres. [2008] WSN and P2P: a self-managing

marriage.In Self-Adaptive and Self-Organizing Systems

Workshops, 2008. SASOW 2008. Second IEEE International

Conference on, 198-201. IEEE

[16] Qwasmi, Nidal, and Ramiro Liscano.[2015]] TinyPolicy: A

distributed policy based management framework for Wireless

Sensor Networks. In Integrated Network Management (IM), 2015

IFIP/IEEE International Symposium on, pp. 918-921. IEEE,

ABOUT AUTHORS

M. NARAYANAN received a B.E. in Computer Science & Engineering from Anna University, Chennai, in 2006, and an M.E.
(with distinction) in Computer Science & Engineering from Sathyabama University, Chennai, in April 2010. He has also been
pursuing a Ph.D. in Computer Science & Engineering at Sathyabama University since July 2010. Presently he is Assistant
Professor, Saveetha School of Engineering, Saveetha University, Chennai, and Tamil Nadu. He has 9 years’ teaching
experience, with research interests in distributed systems, peer-to-peer networks, and video-on-demand service.

Dr. C. ARUN received a B.E in Electronics & Communication Engineering from Anna University, Chennai, as well as an M.E
and Ph.D, in Image Processing from Anna University, Chennai, Tamil Nadu, and India. He is, currently, Professor in the
Department of Electronics & Communication Engineering, RMK College of Engineering & Technology, Chennai, Tamil Nadu,
and India. With 15 years’ experience in teaching engineering in several colleges, his research interests lie in image processing,
cloud computing, distributed systems, and peer -to-peer networks.

