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INTRODUCTION 
  

A software defect is a condition which fails to meet software requirements or end user expectations in software 

products. A defect is an error/bug in coding/logic causing a program malfunction or produces incorrect or 

unanticipated results. Software defect prediction locates defective modules in software. To ensure high quality 

software, the final product should have very few defects. Early defects detection leads to reduced time, 

development cost and rework and reliable software. So, defect prediction is for good software quality. Software 

defect prediction metrics have a big role in constructing a statistical defect prediction model for by software 

organizations during early software development to identify defect modules [1]. 

 

Software cost estimation predicts effort to develop a software system. Many estimation models were used over 

three decades. Computing power is a subordinate resource for software developing companies as it doubles every 

18 months, costing a fraction compared to late 60’s. Personnel costs are an important expense in a software 

company’s budget. In view of this, proper planning is a key aspect for companies. Software community developed 

tools/techniques like effort, size and cost estimation to offset challenges facing software development projects 

management. These tools/techniques are used for software development phases starting with software 

requirements specification. As demand for software applications goes up continually and software 

scope/complexity go higher software companies need accurate estimates of under development projects. Good 

software effort estimates are critical to companies/clients [2].  

 

Software effort estimation methods are categorized as algorithmic/non-algorithmic methods. The former are 

mainly COCOMO, Function Points and Software Life-Cycle Model (SLIM). They are also called parametric 

methods as they predict software development effort using fixed mathematical formula parameterized from 

historical data. But, preliminary stage estimates of a project are difficult to get as primary estimate effort source is 

from a SRS document. They also face problems in modelling inherent complex relationships. Algorithmic 

methods limitations opt for non-algorithmic methods based on soft computing. These methods learn from 

previous data and model complex relationship between dependent (effort) and independent variables [3]. 

 

 
 
Software development estimation is important task in managing huge software projects. It is well known 
that software industry is unable to properly estimate effort, time and development cost. Many estimation 
models exist for effort prediction but there is a need for a new model to get more accurate estimates. 
This paper proposes a Generalized Regression Neural Network (GRNN) to use improved software 
estimation effort for COCOMO dataset. This paper uses Mean Magnitude Relative Error (MMRE) and 
Median Magnitude Relative Error (MdMRE) as evaluation criteria. The new GRNN is compared to varied 
techniques like linear regression, M5, RBF kernel and Sequential Minimal Optimization (SMO) Poly 
kernel. 
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Costs and efforts are predicted by using mathematical formulae in algorithmic cost estimation. Formulae are 

historical data based. A known algorithmic cost model called COCOMO published by Barry Boehm in 1981 was 

developed from analyzing 63 software projects. Boehm proposed three model levels called Basic COCOMO, 

Intermediate COCOMO and Detailed COCOMO. Intermediate COCOMO is described as follows [4]: 

 

Intermediate COCOMO: Basic COCOMO is based on relationship: Development Effort (DE),  

   *DE a SIZE b             (1) 

Where, SIZE is measured in 10000 delivered source instructions. Constants a, b are dependent upon ‘mode’ of 

projects development. DE is measured in man-months. Boehm proposed 3 project modes: 

 Organic mode – simple projects engaging small teams working in known/stable environments. 

 Semi-detached mode – projects engaging teams with a mixture of experience. It is between organic and 

embedded modes. 

 Embedded mode – complex projects developed under tight constraints with changing requirements. 

 

Basic COCOMO accuracy is limited as it does not consider hardware, personnel, modern tools use and attributes 

affecting project cost. Also, Boehm proposed an Intermediate COCOMO that adds accuracy to Basic COCOMO 

by multiplying ‘Cost Drivers’ into an equation with a new variable: Effort Adjustment Factor (EAF) seen in [Table 

-1] [5]. 

 
Table: 1. DE FOR THE INTERMEDIATE COCOMO 

Organic 1.05*3.2*(SIZE)DE EAF
 

Semi-
detached 

1.12*3.0*(SIZE)DE EAF
 

Embedded 1.2*2.8*(SIZE)DE EAF
 

Semi-
detached 

1.12*3.0*(SIZE)DE EAF
 

 

An Artificial NN (ANN) is an information processing system resembling a biological neural network in 

characteristics. ANN’s have many highly interconnected processing elements named neurons which are connected 

to others through a connection link. Each ink is associated with weights have input signal information. Neuron net 

uses the information to solve specific problems. A neuron has its own internal state called neuron activation level 

which is a function of inputs received by a neuron. There are many activation functions applied over net input like 

Gaussian, Sigmoid, Linear and Tanh. Neural nets frequently use sigmoid function [6]. 

 

This paper proposes to investigate MMRE/MdMRE using techniques like M5, SMOPolykernel, Linear regression, 

RBF kernel and the new GRNN. The COCOMO dataset is used for investigations. The paper is organized as 

follows: section 2 deals with related work, section 3 details  materials and methods used. Section 4 provides 

experiments results and discussion of the same and section V concludes the paper. 

 
RELATED WORKS 
 
Kernel principal component analysis (KPCA) with Kernel Density Estimation (KDE) approach was applied to 

Tennessee Eastman process to detect faults by Samuel & Cao [7]. Results confirmed that associating KPCA with 

kernel density estimated control limits ensured better monitoring than using normal probability density function 

based control limits. 

 

An innovative idea of the working of Principal Component Analysis (PCA) with ANN by keeping base of 

Constructive Cost Model II (COCOMO II) was presented by Patil et al., [8]. Feed forward ANN used delta rule 

learning method train a network. ANN training was PCA and COCOMO II sample dataset repository based. PCA 

was a classification method which filters multiple input values into certain values. It reduces the gap between 

actual/estimated effort. Test results from the hybrid model were compared to COCOMO II and ANN. 

 

Use of KPCA as an approximation technique for nonlinear thermodynamics or kinetic functions parameterized 

using available plant archived data was explored by Mukhopadhyay et al., [9]. Simulation on a complex binary 

distillation column proved the new approach’s applicability. 

 



SPECIAL ISSUE (ETNS) 
______________________________________________________________________________________________________________________  

       

  
|Rao and Kumar 2016| IIOABJ | Vol. 7 | 9 | 340-357 342 

                           w
w

w
.iio

a
b

.o
rg

                                                                                        
 

   
                                            w

w
w

.iio
a
b

.w
e
b

s
.c

o
m

 
C

O
M

P
U

T
E

R
 S

C
IE

N
C

E
 

An adaptation mechanism for a mixture of Gaussian process regression models based soft sensor model was 

proposed by Grbic et al., [10]. Also presented was a procedure for input variable selection based on mutual 

information. This selects most important input variables for output variable prediction, simplifying the model for 

development/adaptation. This soft sensor is used for adaptive process monitoring in addition to online prediction 

of difficult-to-measure variables. The proposed method’s efficiency was benchmarked with commonly applied 

recursive PLS and recursive PCA method on Tennessee Eastman process and on two real industrial examples. 

 

A popular component analysis methodology, i.e., PCA, in complex reproducing kernel Hilbert spaces (CRKHS) 

formulated by Papaioannou&Zafeiriou [11] defined a widely linear complex kernel PCA framework. Also it 

shows how to efficiently perform linear PCA in small sample sized problems. Finally, it shows the new 

framework’s usefulness in robust reconstruction using Euler data representation. 

 

Performance of the aforementioned feature selection methods on LR and ℓ1-regularized logistic regression using 

different statistical measures was assessed by Musa [12]. Varied performance metrics like sensitivity, precision, 

specificity, accuracy, area under receiver operating characteristic curve and receiver operating characteristic 

analysis was used. This study included a comprehensive statistical analysis. 

 

A new method to assign weights to features by considering their specific importance on cost was proposed by 

Tosun et al., [13]. Two weight assignment heuristics inspired by a popular statistical technique called PCA was 

used. 

 

Potential/accuracy of MART as a new software effort estimation model compared to recently published models 

like neural networks, Radial Basis Function (RBF) linear regression, and Support Vector regression models with 

linear and RBF kernels was evaluated by  Elish [14]. Comparison was based on a NASA software project dataset. 

 

A new model using COCOMO II, 5 Scale factors and 17 Effort multipliers used as input was proposed by 

Attarzadeh&Ow [15]. A sigmoid activation function created a network to accomplish post architecture 

COCOMOII model. Results regarding MMRE, and Pred (0.25) were compared to traditional COCOMO. 

 

Kalichanin-Balich&& Lopez-Martin [16] used Feed forward NN to estimate software development effort on 

short-scale projects. Totally 132 projects verified the new mechanism. Accuracy was measured regarding MER, 

i.e., MMER was 0.26, LRM 0.26 and NN 0.25. 

 

A Modified MMRE proposed Dave &Dutta [17] used NASA dataset of 60 projects. They undertook experiments 

with three differing evaluation methods, i.e., MMRE, Modified MMRE, and Relative Standard Deviation (RSD). 

Three estimation modes were used, i.e., FFNN, Regression analysis and RBFNN. RBFNN was found to be better 

for effort estimation based on RSD and Modified MMRE according to the authors. 

 

To ensure good results for problems with noise inputs, complex relationships between inputs and outputs and 

where inputs had high noise levels RBFN was proposed by Srichandan [18]. COCOMO 81 and Tukutuku were 

datasets. Clustering algorithm configured RBFN hidden layer. After using widths for models, it was found RBF 

accuracy using minimum width was better than using maximum width. 

 

Various parameters affecting software development effort studied by Park &Baek [19] identified six variables 

other than software size for accurate effort estimation by using NN. Authors compared NN model with the two 

current regression models and human expert judgments. It was revealed that NN model was more accurate than 

other estimation procedures. 

 

A NN based model and stepwise regression model for software development effort was implemented by de 

BarcelosTronto et al., [20]. Author reported results restate that NN model estimated software development effort 

more accurately. Authors compared results with multiple regression, COCOMO and SLIM models, showing that 

NN model suited effort estimation. 

 

A multilayer feedforwardNN to accommodate the COCOMO model was proposed by Reddy &Raju [21]. 

COCOMO database consisting 63 projects was the dataset. Data set was divided into training and validation sets 

in a 80 %: 20 % ratio. Training set had 50 randomly chosen projects while the validation set had 13 projects. 
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MATERIALS AND METHODS 
 

This section describes COCOMO dataset, RBFN, KPCA, MMRE, Linear regression, GRNN methods. 

PROMISE EFFORT ESTIMATION DATASET COCOMO 
 
COCOMO dataset has details of 63 software projects each described by 16 cost derivers or effort multipliers. Of 16 attributes, 15 
are measured on a scale of six categories: very low, low, nominal high, very high, and extra high. A numeric values represents 
categories. Kilo Delivered Source Instructions (KDSI) is a numeric attribute. COCOMO dataset assesses new techniques 
comparative accuracy. [Figure -1] shows a COCOMO dataset’s effort histogram [22]. 

 
Fig: 1. Effort histogram of COCOMO81 
..................................................................................................................................................................................... 

 
REGRESSION ANALYSIS WITH MEAN MAGNITUDE RELATIVE ERROR (MMRE) AND MEDIAN 
MAGNITUDE RELATIVE ERROR (MDMRE) FORMULA 
 
An effort predictor’s value is reported in many ways including MMRE and probability of a project having relative error less than or 
equal to L (PRED (L)). MMRE and PRED (L) are the accepted evaluation criteria to evaluate different software effort estimations 
[23]. 
 
MMRE and PRED are computed from relative error, or RE, the relative size of difference between actual/estimated value of 
individual effort i  

(   ) / (  )i i i iRE predicated effort actual effort actual effort 
       (2) 

Magnitude of Relative Error (MRE) was calculated by taking absolute value of relative error that is, 

 
(RE )i iMRE abs

       (3) 
MRE value is calculated for every observation i of actual/predicted effort. MRE aggregation over multiple observations (N) is 
achieved through Mean MRE (MMRE) as follows: 

 

1 N

i

i

MMRE MRE
N

 
       (4) 

A complementary criterion is a prediction at level L, Pred (L) = k/N, where k is number of observations where MRE is less 
than/equal to L and N is total observations. Thus, Pred (25) gives projects percentage predicted with a MRE less than or equal to 
0.25. 
 
MMRE computes average of MREs over reference projects. As MMRE is susceptible to an individual outlying prediction, MdMRE 
is adopted when many observations are available. MREs median for n projects is MdMRE less sensitive to extreme values of 
MRE adopted. Despite this, MMRE is used in estimation accuracy. MMRE was criticized as it is unbalanced for validation 
procedures and often results in overestimation [24]. 

 i

i

MdMRE median MRE

          (5) 
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KERNEL PRINCIPAL COMPONENT ANALYSIS (KPCA) 
 
In KPCA, this is crucial at two levels. From a practical point of view, this connection allows reduction of Eigen decomposition of 
(infinite dimensional) empirical kernel covariance operator to Eigen decomposition of kernel Gram matrix, which makes an 
algorithm feasible. From theory’s view, it is a bridge between kernel covariance’s spectral properties and those of the kernel 
integral operator [25]. 
 
So, KPCA’s properties theoretical insight goes beyond this algorithm with direct consequences for understanding the kernel 
matrix/kernel operator’s spectral properties. This makes a study of KPCA interesting: kernel Gram matrix is a central object in 
kernel methods and its spectrum has a major role in kernel algorithms; this was shown in Support Vector Machines (SVM). 
Understanding the kernel matrices eigenvalues behaviour, their stability and how they relate to eigenvalues of corresponding 
kernel integral operator is crucial to understand kernel-based algorithms statistical properties. 
 
KPCA is a PCA’s functional generalization similar to Locally Linear Embedding, Isomap or spectral clustering methods. It allows 
as many principal components as data samples in a training set, with directions being nonlinear [26]. 
 
The approach’s rationale is considering straight lines to recover from n-dimension space are data’s principal components. Though 
linear, PCA cannot be used as: 

 directions looked for are not orthogonal; 

 There are more directions to find than space dimension (under determined context). 
 

Though Kernel PCA was defined in RKHSs, same framework applies to reproducing kernel space, provided it has a representer 
theorem. 

 
      Fig: 2(a). Scatter plot of x1 w.r.t x2 in the time-domain. (b) Scatter plot of x1 w.r.t x2 in the MDCT domain - the dashed 
lines represent the directions of the mixing matrix 
…………………………………………………………………………………………………………………………. 

                                     
It refers to Algorithm 1 for precise descriptions of algorithm involving KPCA in underdetermined contexts. For a given 

(reproducing) kernel :k X X  and data set
1,.........,{ }t t Nx 

, one performs Eigen decomposition of a kernel matrix 
defined as: 

' '

'

, 1,.....,
[ ]

:  ( , )

tt t t N

t t

K k

with k x x




                (6) 
(in PCA, this is performed over correlation matrix E[xxT]). Directions corresponding to n largest eigenvalues are scatter data line 
estimates. 
 
It has to assure that K’s eigenvectors are recoverable, i.e. that are expressed as a finite linear kernels combination evaluated on 
training data. This is got through a representer theorem that extends Wahba and Kimeldorf’s to Krein reproducing spaces, 
thereby ensuring that one expresses the eigenvectors as: 

1

( ) ( , )
N

i

i t t

t

v X k x x



      (7) 

With

2

1{ ,.........., } in i i

N 
, for any x in R2, and vi eigenvector corresponding to ith largest eigenvalue. This 

Equation proves that KPCA yields linear directions if the kernel k (·, ·) is linear. Next paragraph is dedicated to presenting kernel 
in Algorithm 1. 
Algorithm 1: KPCA for mixing matrix estimation. 
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0

1, 2,

 0 :  

            , ( ,     );

            ker  (.,.)    (8);

            [ ] ;     

         

T

t t t

Step Initialization

Set m N and n are known

Define reproducing nel k as in equation

Define x x x perform shrinkage with threshold

 



' ', 1,..........,

    || || ' ;   (  )  

          '     - .

 1:   ker    

             [ ]   

t

t

tt t t N

on the x x s map by symmetry all remaining

x s to the positive half plane

Step Krein nel principal component analysis

Define matrix K k as i




   (6);

                .

 2 :       

                 

             arg  - ;

 

n equation

Find the eigenvalues and eigenvectors for K

Step Estimation of the mixing matrix A

Keep the eigenvectors corresponding to the

n l est eigen values

                

              sin   (7).

Express the corresponding n directions

in X u g equation
 

 
Fig: 3. Reproducing kernel k (•, •) plotted as a function (left); eigenvalues for k (•, •) (right) 
....................................................................................................................................................................................... 

 
The KPCA kernel needs to be: 

 Linear, as it looks for lines in Rm; 

 Parameterized so that KPCA can be tuned according to problem difficulty (sparsity of the sources? noisy data?); 

 Designed in a Krein framework (obvious linear kernel
.,. X 

 which is a Hilbert rk that cannot be parameterized 
regarding angles). 

Denoting
'( , )t t

x x


 angle between
' and t t

x x
, kernel 

'

'
'

0

0

0

0

cos( , ) cos
   ( , )

( , ) 1 cos

0              

t t
t t

t t

x x
if x x

k x x

else













 
  

     (8) 

Satisfies all the required conditions (it recall that if k (·, ·) is a RKKS kernel, then so is

'
'

' '

( , )
( , )

( , ) ( , )

k x x
x x

k x x k x x


 and 

that 
' 'cos( , ) ,t tt t

x x x x X


 
 as the xt’s have unit norm). This kernel is plotted in [Figure -3], with eigenvalues. 

Computing dot products in feature space:From 

~ ~ ~ ~

: ( (y ). (y ))ij i kK K  
Equation, it is seen that to compute kernel matrix, 

only vectors dot products in feature space F are required, while explicit calculation of map U(y) need not be known. A dot product 
is computed through use of a kernel function. This is a ‘‘kernel trick’’. The Mercer kernels alone are used as a kernel function [27]. 

Kernel function 
k(y , y )i j

calculates dot product in space F directly from input space vectors RM: 

( , ) ( ( ). ( ))i j i jk y y f y f y
          (9) 

Common kernel functions are Gaussian kernel and polynomial kernel. 
Kernel for linear PCA: If the kernel function is chosen as polynomial kernel of order one 

(y , y ) (y , y )i j i jk 
             (10) 

 
Then linear PCA is performed on sample realizations. Using a kernel matrix to perform linear PCA is the same as ‘‘method of 
snapshots’’ known in reduced-order modeling. This method is computationally efficient than K–L expansion’s standard 
implementation. Using a kernel matrix, an eigenvalue problem of size N*N is needed, whereas in size of eigenvalue problem is 
M*M. In most cases, available experimental data is smaller than data dimensionality.  
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Kernel for nonlinear PCA: Choosing a nonlinear kernel function results in nonlinear PCA performance. A common kernel function 
is Gaussian kernel: 

2

2

|| ||
( , ) exp

2

i j

i j

y y
k y y



 
   

          (11) 

Where
|| ||i jy y

is squared L2-distance between two realizations. A kernel width parameter  controls kernel flexibility. A 

larger value of   allows more ‘‘mixing’’ between realizations elements, whereas smaller value of   uses few significant 

realizations. A choice for   is average minimum distance between two realizations in input space: 

2 2

1

1
min || || ,    1,........, ,

N

i j

i j i

c y y j N
N


 

  
      (12) 

Where c is a user-controlled parameter. 
 
Why KPCA is better than PCA: 1) PCA does not support mean for multilayer NN. 2) Large dataset like 0.000009 assume non-
linear value PCA does not take nonlinear space value [28]. KPCA identifies the kernel’s principal directions where data varies 
largely. 3) PCA supports mapping and so PCA works with single layer NN. A huge data set in practice leads to huge K, storing 
which is an issue. A way to handle this is to perform clustering on the huge dataset, populating the kernel with the clusters 
means. 4) KPCA supports implicit mapping and so it works with multilayer NN. 
 

LINEAR REGRESSION 
 
Regressions techniques predict software evaluate accuracy in evaluation/validation. A Regression Analysis views effect of 
independent variables on a dependent variable. It aims to see how much dependent variable are independent variables based. 
Linear regression is a statistical technique used for prediction or evaluating a linear interrelationship between two numerical 
variables.  
 
A linear regression model having exponential transformation predicts relations between variables involving software size and 
effort to raise reliability in software effort estimation. It changes the independent variable value and sees resulting dependent 
variable change. The aim is to locate to what extent a dependent variable is described using an independent variable. Simple 
Linear Regressions have one dependent and independent variable each [29]. 

Y a bX C                  (13) 
Where  
Y: Dependent variable X: Independent variable 
b: Coefficient of variable X 
a: Y intercept 
C: Constant 
More than one independent variable describes dependent variable change in Multiple Linear Regression Analysis [30]. 
C: Constant 
Consider the problem of approximating set of data, 

    1 1, ,...., , ,   ,l l nD x y x y x y  
              (14) 

With a linear function, 

  ,f x w x b 
    (15) 

The optimal regression function is given by the minimum of the functional, 

   21
,

2
i i

i

w w C      
                  (16) 

Where C - a pre-specified value, and ξ- , ξ+ - slack variables that represent system outputs upper and lower constraints. 
 
SMOPolykernel and Radial Basis Neural Networks (RBFN) kernel 
 
The RBFN NN involves three layers. An input layer of sources nodes (cost drivers); a hidden layer where neurons compute output 
using RBF, which is a Gaussian function, and an output layer that constructs a linear hidden neuron outputs weighted sum and 
supplies the network’s response (effort). A RBF NN configured for software effort estimation has an output neuron. Hence, it 
implements an output-input relation in the Equation which is composition of nonlinear mapping realized by hidden layer realized 
by the output layer’s linear mapping [31] 

1

(x) (x)
M

j j

j

F  



         (17) 
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Where M is number of hidden neurons, 
px is input, 

j
are RBFN networks output layer weights and 

(x)
is Gaussian 

RBF given by: 
2

2

|| ||

( )

j

j

x c

j x e




 
 
 
 

             (18) 

Where 
 and p

j jc 
are center and width of jth hidden neuron and ||.|| denotes Euclidean distance. 

RBFN are powerful alternatives approximating classifying a pattern set some times better than Multi-Layer Perceptron (MLP) NN 
[32]. 
 
RBFs differ from MLPs as an overall input-output map is constructed from local Gaussian axons contributions and need fewer 
training samples training faster than a MLP. A popular method to estimate centers and widths includes using an unsupervised 
technique called k-nearest neighbour rule. The clusters centers give RBF’s centers and distance between clusters is the 
Gaussians width. Centers computation, used in RBF NN kernels function is main focus to achieve efficient algorithms in the 
pattern set’s learning process. Adequate centers choice implies high performance, concerning convergence, learning times and 
generalization. 

SVMs based methods are for classification [33]. For a training data 
 , ,  1,..,i ix y i n

, where 

d
ix 

is a feature vector and 

 
 1, 1iy   

indicates class value of ix
solves the optimization problem: 

 

2

, ,

1

1
min    

2

N

w b i

i

w C 


 
             (19) 

Subject to  

 

   1  for i=1...n

0

T
i i i

i

y w x b 



   


          (20) 

Where :  , H being a high dimensional space ,  and bw  . 0C  Is a parameter controlling margin errors 

minimization and margins maximization. is chosen that an efficient kernel function K exists. In practice, this optimization 
problem is solved using Lagrange Multiplier. SMO [34] is an to solve SVM QP problem. Its advantage is its ability to solve 
Lagrange multipliers without numerical QP optimization. The Lagrangian form is as follows : 

 
, 1 1

1
min    ,

2

n n

i j i j i j i

i j i

y y K x x   
 

 
                (21) 

Subject to 

 1

0   for i=1...n

0

i

n

i i

i

C

y







 


             (22) 

On solving optimization problem, w is computed as [35]: 

 
 

1

n

i i ii
w y x


 

            (23) 

ix
Is a support vector if

0i 
. New instance x is computed by: 

 

   
1

,
Sn

i i i

i

f x y K s x b


 
             (24) 

Where si are support vectors and nS is number of vectors. 
The polynomial kernel function is given by: 

 
   , ,   where >0

d
T

i j i jK x x x x r  
      (25) 

And the Radial basis function (RBF) kernel: 

 

 
2

, exp ,   where >0i j i jK x x x x 
 

   
 

      (26) 
 
M5 algorithm 
 
Tree-building algorithms like C4.5 determine which attributes best classify remaining data, followed by iterative tree construction. 
Decision trees immediate conversion to rules easily interpreted by decision-makers is their advantage. For numeric data mining 
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prediction, it is common to use regression or model trees [36]. Both build decision tree structures where leaves are responsible 
for a specific input space local regression. The difference is that while regression trees generate constant output values for input 
data subsets (zero-order models), model trees generate linear (first-order) models for every subset.  
 
M5 algorithm builds trees with leaves being linked to multivariate linear models and tree  nodes are chosen over an attribute 
maximizing expected error reduction as a standard deviation function of output parameter. M5 algorithm builds decision trees that 
divide attribute space in orthohedric clusters, with border paralleling the axis. Their advantage is their being converted o rules 
easily; each tree branch has the following condition: attribute ≤ value or attribute > value. 
 

GENERALIZED REGRESSION NEURAL NETWORKS (GRNN)  
 
ANN is used for cost estimation as it learns from earlier data. Three factors defining ANN are:  i) interconnection pattern between 
different neuron layers, ii) learning process to update interconnections weights and iii. activation function converting a neuron's 
weighted input to output activation. 
 
Network nodes are split into input layer which is linked to weights having information on input signals and output layer which goes 
through network nodes in hidden layer [37]. 
 
A basic NN has inputs applied by weights combined to give an output. Different NN learning algorithms like Delta rule leaning, 
Perceptron learning and back propagation learning are used. It uses Delta rule learning algorithm to train a NN and solve different 
problems. Delta rule learning algorithm uses sigmoid activation function in which every neuron has continuous activation function 
rather than threshold activation function. 
 
GRNN is a RBF based, supervised learning model used for classification, regression and  time series predictions. GRNN 
architecture is seen in [Figure -4] [38]. 

 
Fig: 4. GRNN Architecture 
..................................................................................................................................................................................... 
 

GRNN comprises four layers named input layer, pattern layer, summation layer and output layer. Input units numbers depend on 
total observation parameters i.e. input vector ‘I’ (feature matrix Fi). Input layer connected to pattern layer has neurons to ensure 
training patterns and output to summation layer for performing normalization of resultant output set. Each pattern layer is 
connected to summation neurons which calculate weight vector using these equations [39]. 
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        (27) 

Where output F (I) is weighted average of target values Ti of training cases Ii close to input case I. 
GRNN is one-pass learning algorithm based having a highly parallel structure. GRNN is a powerful memory based network that 
estimates continuous variables and converges to an underlying regression surface. GRNN’s strength is its ability to deal with 
sparse data effectively. GRNNs feature fast training times, model non-linear functions and are known to do well in noisy 
environments if provided enough data. The GRNN algorithm can ensure smooth transition from one observed value to another, 
even with sparse data in a multidimensional measurement space. GRNN applications produce continuous valued outputs. 
 

  
 
Fig: 5.GRNN Network 

..................................................................................................................................................................................... 
 
For GRNN networks, the number of hidden layer (Slab2) neurons is the number of patterns in a training set as a neuron 
represents each pattern. Input layer neurons (Slab1) are the inputs, and output layer neurons (Slab3) correspond to number of 
outputs. 
 
GRNN’s advantage is the speed with which a network is trained. There are no training parameters like learning rate and 
backpropagation network momentum, but a smoothing factor is applied after training a network. Smoothing factor is an GRNN 
adjustable parameter, so overtraining is not likely in GRNN. Smoothing allows GRNN interpolate between patterns/spectra in 
training sets. Smoothing determines how tightly a network matches predictions to training patterns data. Smoothing factor for 
GRNN networks must be greater than 0 ranging from 0.01 to 1 with good results. 
The proposed GRNN parameters are tabulated in [Table -2]. 
 

Table: 2.PARAMETERS FOR THE PROPOSED GRNN 
 

Number of input 17 
Number of output 1 

Number of hidden layer 2 

Number of neurons in hidden layer 6 

Number of cluster centers 85 

Competitive rule conscience full 
metric – Euclidean 

Activation function tanh 

Momentum 0.5 

Learning rate 0.1 

 

RESULTS AND DISCUSSION 
 
The attributes of the COCOMO dataset is used as it is and feature transformation of the attributes using KPCA). 
In the first set of experiment without data transformation using PCA, the MMRE and MdMRE is evaluated using 
various techniques such as M5, Linear regression, SMOPolykernel and RBF kernel and the proposed Generalized 
Regression Neural Network. In the second set of experiments, the same is evaluated with feature transformation of 
the attributes using KPCA. 

Table: 3. PARAMETERS FOR THE PROPOSED GRNN 

M5 Actual M5 - Kernel PCA 
predicted 

MMRE 

387 251.58 0.35 

18 -61.69 4.43 

15 -103.45 7.9 

237 259.65 0.1 

958 628.78 0.34 

Slab1 Slab2 Slab3 
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14 49.01 2.5 

57 107.34 0.88 

33 31.3 0.05 

98 463.89 3.73 

605 1021.06 0.69 

423 655.96 0.55 

702 2917.59 3.16 

724 1126.56 0.56 

70 255.04 2.64 

20 52.31 1.62 

523 242.14 0.54 

7.3 8.69 0.19 

1272 589.25 0.54 

88 171.16 0.95 

55 135.16 1.46 

8 53.42 5.68 

45 376.78 7.37 

1075 874.58 0.19 

243 2134.84 7.79 

38 82.67 1.18 

106 239.03 1.26 

321 1213.44 2.78 

1063 1093.85 0.03 

201 133.11 0.34 

126 576.56 3.58 

240 1259.74 4.25 

6600 11253.02 0.71 

87 502.26 4.77 

61 324.14 4.31 

122 316.15 1.59 

8 -227.09 29.39 

40 643.72 15.09 

1600 1664.47 0.04 

11400 2364.59 0.79 

6400 2361.72 0.63 

79 -206.75 3.62 

2455 1586.89 0.35 

156 63.17 0.6 

41 424.56 9.36 

8 -77.01 10.63 

130 1267.25 8.75 

6 -361.3 61.22 

82 468.67 4.72 

12 -218.62 19.22 

73 952.22 12.04 

36 65.26 0.81 

176 445.23 1.53 

83 250.66 2.02 

218 1048.4 3.81 

453 320.4 0.29 

539 523.01 0.03 

5.9 -338.05 58.3 

9 220.04 23.45 

43 13.26 0.69 

230 142.14 0.38 

47 173.46 2.69 

2040 270.99 0.87 

50 -4014.22 81.28 
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Fig: 6. M5-actual 
..................................................................................................................................................................................... 

 

From the [Table -3] and [Figure -6], it can be observed that the MMRE method averagely decreased by 195.62% 

when compared with M5 - Kernel PCA predicted method with M5-actual. 

 
Table: 4.LINEAR REGRESSION-ACTUAL 

Linear 
regression - 
actual 

linear 
regression 
Kernel PCA-
Predicted 

MMRE 

387 469.65 0.21 

18 182.52 9.14 

15 205.73 12.72 

237 255.78 0.08 

958 327.05 0.66 

14 175.42 11.53 

57 187.25 2.29 

33 270.92 7.21 

98 251.77 1.57 

605 463.41 0.23 

423 380.06 0.1 

702 3096.17 3.41 

724 1050.5 0.45 

70 329.5 3.71 

20 176.36 7.82 

523 427.19 0.18 

7.3 159.62 20.87 

1272 3698.57 1.91 

88 219.79 1.5 

55 261.59 3.76 

8 169.59 20.2 

45 466.34 9.36 

1075 306.92 0.71 

243 1099.36 3.52 

38 211.47 4.56 

106 395.59 2.73 

321 349.34 0.09 

1063 621.22 0.42 

201 362.85 0.81 

126 734.3 4.83 

240 598.59 1.49 

6600 11830.69 0.79 

87 299.23 2.44 

61 113.51 0.86 

122 149.44 0.22 
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8 127.66 14.96 

40 126.16 2.15 

1600 1775.59 0.11 

11400 1963.6 0.83 

6400 2037.19 0.68 

79 284.55 2.6 

2455 1724.29 0.3 

156 704.66 3.52 

41 173.58 3.23 

8 163.35 19.42 

130 334.35 1.57 

6 196.49 31.75 

82 244.74 1.98 

12 259.87 20.66 

73 177.68 1.43 

36 320.99 7.92 

176 323.42 0.84 

83 352.96 3.25 

218 379.3 0.74 

453 799.12 0.76 

539 696.17 0.29 

5.9 170.66 27.93 

9 165.67 17.41 

43 165.9 2.86 

230 298.88 0.3 

47 563.01 10.98 

2040 940 0.54 

50 338.73 5.77 

 

 
Fig:7. Linear regression-actual 
..................................................................................................................................................................................... 

 

From the [Table -4] and [Figure -7], it can be observed that the MMRE method averagely reduced by 197.18% 

when compared with linear regression Kernel PCA-Predicted method with Linear regression-actual. 
Table: 5: M5-ACTUAL 

M5 Actual M5 predicted MMRE 
387 270.89 0.3 

18 -134.35 8.46 

15 -27.83 2.86 

237 32.02 0.86 

958 528.87 0.45 

14 -77.98 6.57 

57 80.88 0.42 

33 -413.87 13.54 

98 892.3 8.11 

605 2070.09 2.42 

423 479.76 0.13 

702 3028.23 3.31 

724 1408.59 0.95 

70 -208.06 3.97 
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20 -82.82 5.14 

523 406.23 0.22 

7.3 -26.33 4.61 

1272 4881.49 2.84 

88 224.52 1.55 

55 119.59 1.17 

8 -88.36 12.04 

45 538.44 10.97 

1075 1114.52 0.04 

243 1954.62 7.04 

38 -181.48 5.78 

106 474.68 3.48 

321 -60.63 1.19 

1063 1749 0.65 

201 237.37 0.18 

126 276.43 1.19 

240 130.22 0.46 

6600 12754.64 0.93 

87 -0.89 1.01 

61 147.99 1.43 

122 176.05 0.44 

8 -58.91 8.36 

40 113.44 1.84 

1600 1388.09 0.13 

11400 6500 0.43 

6400 2907.02 0.55 

79 -530.49 7.72 

2455 2046.46 0.17 

156 -110.05 1.71 

41 214.05 4.22 

8 -359.67 45.96 

130 1130.62 7.7 

6 -118.21 20.7 

82 -100.9 2.23 

12 171.41 13.28 

73 -123.38 2.69 

36 -30.83 1.86 

176 788.17 3.48 

83 355.92 3.29 

218 -3.75 1.02 

453 620.92 0.37 

539 588.57 0.09 

5.9 -65.98 12.18 

9 250.13 26.79 

43 27.17 0.37 

230 897.51 2.9 

47 -326.15 7.94 

2040 901.71 0.56 

50 -12.54 1.25 

 
Fig: 8. M5-actual 
..................................................................................................................................................................................... 
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From the [Table -5] and [Figure -8], it can be observed that the MMRE method averagely decreased by 197.64% 

when compared with M5 Predicted method with M5-actual. 

 
Table: 6. LINEAR REGRESSION-ACTUAL 

Linear 
regression - 
actual 

linear 
regression -
Predicted 

MMRE 

387 478.42 0.24 

18 182.61 9.14 

15 208.85 12.92 

237 258.51 0.09 

958 329.45 0.66 

14 175.51 11.54 

57 185.44 2.25 

33 273.74 7.3 

98 251.19 1.56 

605 469.18 0.22 

423 378.98 0.1 

702 3085.02 3.39 

724 1040.45 0.44 

70 326.36 3.66 

20 179.67 7.98 

523 435.07 0.17 

7.3 162.49 21.26 

1272 3673.21 1.89 

88 217.67 1.47 

55 260.24 3.73 

8 169.03 20.13 

45 473.4 9.52 

1075 305.79 0.72 

243 1090.32 3.49 

38 213.79 4.63 

106 398.51 2.76 

321 355.72 0.11 

1063 624.37 0.41 

201 368.3 0.83 

126 737.04 4.85 

240 603.88 1.52 

6600 11768.41 0.78 

87 302.75 2.48 

61 115.12 0.89 

122 150.58 0.23 

8 128.49 15.06 

40 127.91 2.2 

1600 1795.77 0.12 

11400 1952.73 0.83 

6400 2055.82 0.68 

79 282 2.57 

2455 1751.55 0.29 

156 709.27 3.55 

41 173.25 3.23 

8 164.83 19.6 

130 333.87 1.57 

6 194.74 31.46 

82 249.12 2.04 

12 263.25 20.94 

73 178.5 1.45 

36 319.74 7.88 

176 326.66 0.86 

83 359.24 3.33 

218 383.32 0.76 

453 794.14 0.75 

539 702.06 0.3 

5.9 170.69 27.93 

9 165.08 17.34 
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43 167.9 2.9 

230 301.94 0.31 

47 562.96 10.98 

2040 936.85 0.54 

50 337.21 5.74 

 

 
Fig:9. Linear regression-actual 
..................................................................................................................................................................................... 

 

From the [Table -6] and [Figure -9], it can be observed that the MMRE method averagely reduced by 197.17% 

when compared with linear regression Predicted method with Linear regression-actual. 

 
CONCLUSION 
 

This paper proposes a Generalized Regression NN to use improved software effort estimation for COCOMO 

dataset. This paper uses Mean Magnitude Relative Error (MMRE) and Median Magnitude Relative Error 

(MdMRE) as evaluation criteria. The new method performance was compared to that of three regression 

algorithms including M5, linear regression and modified SVM to avoid quadratic problem. Two kernels were used 

for SVM with the first being a polykernel and second using RBF. It is found that the new method outperformed 

classical regression algorithms in experiments. 
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