
REGULAR ISSUE 
Prabaharan  et al. 
_______________________________________________________________________________________________________ 

  
| Prabaharan et al. 2016 | IIOABJ | Vol. 7 | 7 | 24–29 24  

                           w
w

w
.iio

a
b

.o
rg

                                                                                        
 

   
                                            w

w
w

.iio
a
b

.w
e
b

s
.c

o
m

 
C

O
M

P
U

T
E

R
 S

C
IE

N
C

E
 

 

 

A DISTRIBUTED APPROACH FOR PREDICTING MALICIOUS ACTIVITIES IN A 
NETWORK FROM A STREAMING DATA WITH SUPPORT VECTOR MACHINE 
AND EXPLICIT RANDOM FEATURE MAPPING 
Prabaharan Poornachandran 1, Premjith  B2,  Soman K. P2 

1Amrita Center for Cyber Security Systems and Networks, Amrita Vishwa Vidyapeetham, Kollam, INDIA 
2Centre for Computational Engineering and Networking, Amrita Vishwa Vidyapeetha,, Coimbatore, INDIA 

 
 
ABSTRACT 
        

 
 

 
 

  
 

 
 

 

 

 

 

 
*Corresponding author: Email:  prem.jb@gmail.com Tel: +91-9597141816 

 
 
INTRODUCTION 
 
As the new technological innovations are emerged, cyber-attacks are also changing the colours. The ubiquity of 
technology leads to the exponential growth in the cyber threats. Now cyber security has become one of the primary 
concerns of governments as well as private organizations. An important problem of cyber security is how to 
effectively monitor and predict threats in real time, i.e. detecting the threats from streaming data. A streaming data is 
nothing but a massive volume of data coming from various sources, such as videos, images, text etc. and may not be 
stored in a disk for analysis. Streaming data are considered as data in motion and the analysis is always single-pass, 
i.e. the data cannot be reanalyzed once it is streamed.  
 
With the increase in network traffic, network logs have become huge and the detection of cyber-threats from these 
massive streaming logs is now a tedious task. Conventional machine learning algorithms are not suitable for the real 
time prediction of malicious activities in a network as they require storage of the data to predict whether it is a threat 
or not. But this is not possible for streaming data. As the data streams are one-pass and highly non-static, the 
decision has to be taken in quick time. This necessitates the requirement of a fast and scalable mechanism for real 
time detection of cyber threats from a data stream.  
 
In cyber security, one of the problems is classification of network logs into malicious and benign. In machine 
learning, classification [1], a supervised learning approach, is used for detecting the malicious activities in a 
network. Support vector machine [2], Regularized least squares [3] etc. are common classification algorithms. 
Generally classification algorithms are linear in the sense; they are able to classify data which are linearly separable. 
But a streaming data or network traffic logs are never linearly separable and are often non-stationary. So offline 
storage and analysis is quite impossible [4]. Conventional classification algorithms are designed to work with offline 
data. There are certain other issues which make the classification of data streams makes tougher which are high 
speed nature of data streams, unbounded memory and hardware requirements, concept drifting, data visualization, 

  
 
 
Technology reduces human effort. However technological advancements always bring threat to personal 
as well as organizational security, mainly because we all are connected to the internet. Therefore, 
ensuring cyber security becomes the major topic of discussion. As the magnitude of activities over the 
internet is unimaginable, envisioning the characteristics of network activities whether it is malicious or 
good, coming from a stream of data in real time is really a tough task. To tackle this problem, in this 
paper, we propose a distributive approach based on Support Vector Machine (SVM) with explicit random 
feature mapping and features mapping is obtained using Compact random feature maps (CRAFTMaps) 
algorithm. Distributing the job achieves notable improvement in the total prediction time. 
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challenges in distributed applications, modeling of mining results in real time, tradeoff between accuracy and 
efficiency etc. [9].  

 
Nonlinear classification algorithms such as non-linear SVM with kernel methods give state-of-the-art accuracy in 
detecting cyber threats when the prediction is done offline and come with a huge computational cost for real time 
prediction. Generally kernel methods transform input data to a finite higher dimensional space where a linear 
separation is obtained. Kernel methods were widely used for classifying data when the data size is relatively 
small. But if the input data size is massive and if the data are not linearly separable, the number of support vectors 
(Special subset of input data) to be stored becomes large. Therefore as the size of the data increased, so does the 
computation time and storage. Explicit feature mapping methods alleviate this curse of support problem and 
thereby make the classification algorithms appropriate to deal with streaming data. An explicit feature mapping 
algorithm projects the input feature vectors to a higher dimensional vectors which are randomly generated from a 
standard normal distribution and then compute the dot products.   
 
Several explicit feature mapping algorithms such as Random Kitchen Sink [5-6], [13], Fastfood [7], Compact 
random feature maps [8] etc. are generally used for mapping input data explicitly to a higher dimensional space. 
In this paper we investigate a recently introduced explicit mapping method - Compact random feature maps. 
Compact random feature map algorithm is a polynomial kernel approximation which resolves the rank deficiency 
(underutilization of projected space) problem [8] that commonly appears in random mapping.  
 
In this paper we investigate the feasibility of distributing the abnormal activity detection in a streaming data with 
compact random feature mapping algorithm and Support Vector Machine classification algorithm. Experimental 
study showed that, like other explicit feature mapping algorithms, compact random feature map algorithm 
proposed by Hamid, et.al [8] computes only one dot product in the higher dimensional space and hence the 
storage requirement is very less. This algorithm also manages the underutilized space in the featured space by 
down projecting the obtained features. Utilizing this advantage of explicit feature mapping algorithm, this paper 
proposes a parallel implementation of real time prediction of streaming data. Four machines run in parallel 
implements the decision function and result from all the machines combined to attain the overall prediction time 
and accuracy. 

 
METHODS 
 

Even though kernel methods are successful for offline prediction, it is found to be difficult to use typical kernel 

methods for the prediction at real time. This is because of the fact that, the storage and offline analysis of data 

streams is impractical. So classification algorithms like Support Vector Machine works poorly for streaming data. 

In order to fix this issue, we utilize compact random feature map algorithm, an explicit way of projecting feature 

vectors to a higher dimensional space, in a distributed way. Parallelism is achieved by dividing the projected 

features uniformly and each subset of features is passed to different processors. For each processor, define weight 

vectors  . Linear combination of features and weight is computed at each processor and final prediction is 

computed by combining the results obtained at each processor.  Figure-1 shows the block diagram of how 

prediction is implemented distributive after projecting the input feature vectors to a finite higher dimensional 

space. 
Mapping of features to another dimension is achieved by kernel trick and is discussed in the next subsection. 
 
Kernel trick 
 

The heart of a classification algorithm is kernel trick. Using kernel trick, the decision function can be computed as,  

 

    
T

g x x                                         (1)  

 
Here  .   is a feature mapping operator. Unfortunately this feature mapping may lead to infinite dimensionality and make the 

computation very expensive. In order to nullify this problem, a dual representation was introduced to compute the decision 

function,  
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This representation is called kernel function. Classification algorithms such as Support Vector Machine, a linear classifier in 

nature, uncover the non-linear relationship among data using the dual representation. This kernel trick reduces computational 

cost of evaluating the feature mapping function  . . 

 
One disadvantage of the typical kernel methods is scaling problem. That is, these methods often fail with large data set or real 
time prediction. A fast learning approach is required to deal with this problem. Explicit random feature mapping algorithms are one 
of the solutions to this problem. Numerous algorithms such as Random Kitchen Sink, Fastfood etc. have been devised for the 
explicit mapping of input feature vectors to a manageable higher dimensional space. Compact random feature map is one such 
algorithm which approximates polynomial kernels. The background of all explicit random feature mapping is the method of 
random Fourier features proposed by Rahimi et al. [5]. 

 

 
Fig: 1. Block diagram for how the prediction is computed parallel with explicit feature mapping 

………………………………………………………………………………………………………………………… 

 
Random Fourier Features 
 

Rahimi et.al proposed an alternate approach, Random Kitchen Sink, to the kernel trick. This approach accelerates the training as 

well as testing by projecting the feature vector to a manageable random higher dimensional space. And the obtained inner 

product of the transformed features is approximately equal to the inner product in feature space.  

 

The key theorem behind Random Kitchen Sink (RKS) is Bochner’s theorem [10]. According to Bochner’s theorem, any shift 

invariant, continuous function is positive definite if and only if it is the Fourier transform of a positive measure. Mathematically, we 

can write this theorem as, 

 
1

( )
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                     (3) 
Where  z x y . 

So as a consequence of Bochner’s theorem, the inverse Fourier transform is interpreted as the expectation in probability theory. 
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Where   P  is a probability distribution if the kernel is properly scaled [11]. 

 
Therefore we can write as, 
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Where   is sampled from  P . 
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The estimate can be improved by drawing random samples from the distribution  
1 2
, , ,   

D
P  [11]. Now the estimate is 

computed as the expectation of mean of samples. 
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Since both the probability distribution and kernel function are real, we can omit the imaginary part in the expansion of
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j
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Hence, the kernel function can now be written as, 
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And now the kernel function can be written as, 
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RKS algorithm defines the maps feature vector to a higher dimensional space with this feature mapping operator. 

 
Compact random feature map (CRAFTMaps) 
 
CRAFTMaps is another explicit random feature mapping algorithm whose key idea is to apprehend the Eigen structure of the 
exact kernel space completely, and then represent it in a more compact form. Unlike RKS, CRAFTMaps algorithm approximates 

polynomial kernels of the form  
r

T

x y q with 


q  and
0

r . CRAFTMaps algorithm computes the feature mapping in the 

following two steps: up projection and down projection.  
 

In the up projection step, feature mapping function is defined as, : 
d D

J , where d  is input feature dimension and D  is the 

dimension of projected space, d D   and for all , 
D

x y  ,      , ,J x J y H x y  . Feature mapping is obtained by 

projecting x  onto a set of random d   dimensional vectors from standard Gaussian distribution, and then compute the dot 

product at the projected space. This up projection can be achieved using any of the well-known explicit feature mapping 
algorithms. 
 
One of the main disadvantages of random feature mapping is rank deficiency. In order to nullify this effect, CRAFTMaps down 
projects the resultant feature vectors to a relatively lower dimension. Now the feature mapping operation is defined as, 

: ,   
D E

F E D  and          , ,F J x F J y J x J y . 
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RESULTS 
 

We conducted our experiment with 1999 KDD cup data set [12]. Data set contains 494021 data samples and 41 
features. Among these data, 449785 are abnormal and remaining data is normal. The objective of our experiment 
is to predict whether the incoming data is abnormal or not. Since the distribution of data is not uniform, (i.e. 
91.05% data are abnormal) we can employ One-class SVM algorithm for the classification. In the preprocessing 
step, all data are normalized to the range [-3, +3] and also we assume that training data are not linearly separable. 
Therefore, input feature vectors are mapped to a higher dimension where we can draw a classifier which can 
separate data linearly.  
 

After normalizing the training data, CRAFTMaps algorithm is used for the explicit random projection and features 
are projected to a dimension 4 times the input feature dimension. Random projection of features is obtained by 
multiplying each feature vector with the product of a Hadamard matrix and a diagonal matrix whose elements are 
coming from {+1, -1} with equal probability. Dimension of space to which the features are projected, input 
feature dimension and the degree of the polynomial kernel determines the number of such multiplications for each 
feature. Here, the input feature size is 41d , the dimension to which features are projected is taken as 164D   
and the degree of the polynomial kernel is fixed to 2r . So 8 multiplications are required in this case 
(  * /T r D d ). 
 
In order to avoid the rank deficiency problem, resultant feature vectors are down projected to a lower dimension. 
This dimension depends on the degree of the polynomial kernel. After shuffling elements in resultant feature 
vectors randomly, we combine two adjacent elements from each feature vectors to generate new feature vectors. 
Now the dimension of features has reduced to 82. These obtained features are given as input to SVM for 
classification. Training model is created by adjusting certain parameters in the toolbox. Test data also first 
normalized and then mapped to a relatively manageable higher dimension.  
 
These computations are performed on 4 parallel machines and the final output is obtained by assembling the 
results from the parallel machines. Total data (80000 samples) were divided into 4 batches and each batch of 
20000 data was given to each processor for prediction. Prediction times from all four machines are observed and 
total prediction time is fixed as the maximum time taken by a single processor. Even though four machines are of 
same configuration, speed of prediction depends on many external as well as internal factors.  
 

Despite implicit mapping of features gives 100% prediction accuracy, the time taken to predict the malicious 
activities in the network is huge. Explicit random feature mapping improves the time complexity to a great extent 
by allowing a small percentage of error. Application of CRAFTMaps algorithm also reduces computational 
complexity by avoiding the underutilized spaces in the featured space.  
 
[Table-1] explains the time taken by each machine for the prediction. Four machines gave different prediction 
time and the time taken for detecting the abnormal activities in the network is taken as 0.32 sec, which is the 
maximum time taken by a single processor. Total prediction accuracy is taken as the average of accuracies 
obtained from each machine. Here we get 98% accuracy in detecting malicious activities from a set of 80000 data, 
which is equivalent to the state of the art accuracy. 

 

Table: 1. Prediction time of parallel machines and prediction accuracy 

  
Machine Prediction time Prediction accuracy 

P1 0.29 sec 98% 

P2 0.32 sec 98% 

P3 0.29 sec 100% 

P4 0.31 sec 96% 

 

 
CONCLUSIONS 

 

 Identification and detection of malicious activities in a network in real time is a difficult task because time and 

storage requirement for real time prediction is huge. So detection of abnormal activities from a streaming network 

data with SVM and explicit random feature mapping algorithms (say CRAFTMaps) reduces the time requirement. 

Also when the prediction is done in parallel, the speed can be improved significantly. CRAFTMaps algorithm was 

used for explicit mapping and obtained 98% accuracy in 0.32 seconds for 80000 data. Distributive processing of 

data improves the prediction of malicious activities from streaming network logs by a great margin.   
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