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INTRODUCTION 
 

In generally, Synthetic Aperture Radar (SAR) imagery technique is considering for all intentions and purposes used 

for controlled surveillance of oil spill monitoring on coastal surface areas. The SAR imagery technique is using two 

types of sensors called as airborne and spaceborne sensors. However, most probably space-borne SAR surveillance 

is comparably independent of day-night and cloud coverage conditions. While, utilizing the SAR airborne sensors 

cannot be adverse under coastal weather conditions, are may simply unavailable over remote Arctic regions. But, the 

spaceborne SAR system can be acquire images over named regions on a regular and reliable basis. In particularly, 

the radar satellites are using SAR technique (such as RADARSAT, ERS, ENVISAT, etc...) have been employed to 

investigating and controlling for the navigational purposes. This can be monitoring for environmental conditions and 

environmental changes, for example, ice drift, iceberg detection, ice concentration, weather changes, oil spill 

detection, ship wake detection, shoreline detection, marine surrounding object identification, water quality analysis, 

and soon [1] – [4].  

 

In marine environment surroundings, the oil spills spread over the sea surface regions for varying the gradation of 

lager oil tanker accidents, especially this type of variations are occurred the coastal beaches. As of now the oil 

pollution problem is a major aspect in observing the sea surface regions and marine surrounding environments. In 

addition, the small-scale release of oil into the sea surface regions, is recognized as a slicks and while large-scale 

ones are called spills [5]. However, the accurate detection of oil spill in a timely manner, would be beneficial to 

resource management for monitoring of oceanography. As of now, the remote sensing method is one of the most 

effective operation that can be performed on sea monitoring and marine environment for object identifying. 

 

Most of the radar satellites are monitoring for coastal regions using SAR remote sensing techniques for detecting 

object’s (i.e., oil spills). Basically, the satellite remote sensing system are two types, namely passive and active 

remote sensing techniques. The passive remote sensing techniques are used optical sensors, infrared/ultraviolet 

 
 
Synthetic Aperture Radar (SAR) is one of the coherent technique, that has been shown to have a great 
potential for marine surveillance applications such as oil spill and ship tracking detection. In this paper, 
we proposed an approach called a grey level co-occurrence matrix (GLCM) based texture feature, are 
applied on the SAR images to spill the oil from selected region. This uses artificial neural networks which 
classifies each pixel of selected region of interest (ROI) on SAR image(‘s). The performance 
development is studied by utilizing a time series of SAR images in a single ocean surface region 
acquired from SAR scene time series. Thereby, the remote sensing setup is trained on preliminary image 
of the time series and then pragmatic to consequent images from the radar satellites. After applying the 
classification method, the result of accuracy is at least 75% depending on the choice of our oil spill 
regime type. It is possible only with the radar satellite incidence projection views from the training 
dataset, is similar to that the classified image(‘s). Our proposed approach computational cost is 
moderately considering for classification operational procedure, near-real time service of SAR image 
processing.  
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systems, and microwave radiometer. The active remote sensing techniques are used radar satellite systems and laser 

fluoro-sensors [6], [7]. In the middle of these systems SAR can provide the valuable details about the region of 

specific location and size of the oil spill. It is due to the wide area coverage and day/night and all-weather 

conditional capabilities [8]. At this situation, the object identification is not accurately shown, due to the large area 

covering. 

 

In generally, most of spaceborne SAR imagery systems are observing for detecting the oil spills, which is follows 

three steps: 1) dark spot identifying; 2) extraction of physical and geometrical features about the dark spot 

characteristics and properties; and 3) classify and discrimination about the dark spot as an oil spill or look-alike (i.e., 

internal waves, natural organics, jelly-fish areas, algae, threshold wind speed less than 3 m/s, rain cells, and kelp 

beds) [9], [10], [11]. Usually, these measurable features can be classifying as the performance of those operations, it 

can be operating based on manual or automatic methods [12] – [16]. In many existing systems are proposed the 

different approaches for detecting dark regions. But, most of the approaches are used manual selection method by 

cropping a broader area containing the dark formation [16], [17], regions such as adaptive threshold algorithms [12], 

[15], [18] – [20], marked point and statistical rule based thresholding methods [21], [22], wavelet based methods 

[23] – [25], fractal dimension estimation [26], [27], support vector machine [28], and neural networks [29] – [32]. 

 

In this paper, a fast, robust and effective automated approaches have been developed for oil spill monitoring. This 

approach is proposed a neural network classification algorithm that is used for achieving this goal. Before 

classifying the neural network segmentation capabilities have been already proofed in marine environment [33], that 

can be based on knowledge base system and it couldn’t be tested for dark spot detection. 

 

This paper is organized in four sections. Section II contains a description of the proposed method with their principle 

descriptions. In section III, a detailed description of each step in the dark-spot detection and the experimental 

analysis are obtained using ERS-2 SAR images. The conclusion and future scope is discussed in section IV. 
 

METHODOLOGY 
 

In our proposed methodology, the designing and development phase having two main difficulties, which can be 

occur for detection of dark spot is as: 1) the SAR imagery removes speckle noise due to its constructive and 

destructive inferences of reflections from sea surfaces regions of oil spill object detection and 2) the SAR image 

contrast between the dark region and its background can vary from specified area of image dark spot. And also, SAR 

image dark region vary from the local area of sea surface, and the spatial resolution of incidence angles [34], [35]. 
 
Pre-Processing 
 

In this proposed methodology, the SAR imagery of full resolution is 1200 X 1800 pixels and each pixel is 

prohibitive computations of extracting feature vectors using radar technique for remote locations. And also, it has to 

take the textural information that is relevant feature responsible of spill type, which is contained on a wide coverage 

of SAR image dark region. It containing the low wind speed of radar resolution encompasses for spill type 

classification implementation. Designed for this analysis, we like better to choose using low resolution of the 

complete SAR image, that destruction subsequently applied using low-pass filtering. The consequence result of the 

image size in our algorithm is about 2200 X 3000 pixels [38], [44]. In some of artefacts are commonly find on SAR 

images, that is overlapping the regions of separate the image beams for several impedes and also any kind of texture 

analysis. Thus, the classification will occur on the separating of beams that encompass one full SAR image. The 

calibration as outlined of X-band SAR products in the manual operation accomplished to arrive at 0  values 

according to the following formula: 

 

 

 

 

Where   is the resident frequency approach of pixel of image, P denotes the pixel arithmetical value backscatter 

about the intensity value, and CalFactor is denotes the calibration factor as per the distribution. 
 
 
 
 

)1...(..........sin* 2

0
 PCalFactor
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Texture Extraction  
 

In this analysis, the set of features are an instant feature of SAR imagery region as well as grey-level co-occurrence 

matrix (GLCM) features. Usually, these features are investigating for texture information and it has been explored in 

abundant periodicals, especially in SAR exploration [35] – [37]. Naturally, these features are containing only for 

first-order logic, that can be obtain the information about the image object of each grey values on each sliding 

window. But, the higher statistical orders can be described as usually for computing the histogram pixel values, 

pixel triples, etc. After this process the determination of histogram results are worked with 64 dim levels. In such a 

way that, we would process the enough region of interest on images for histogram results. In our numerical analysis, 

lower number of dark levels (e.g., 32 and 16) prompted to enhance the image that shows with less visualized pixels 

of interest. Such arrangements are along with these lines regarded less valuables of dark region. On account of 

GLCM, the first picks a parameter is based on the sliding window size. 

 

1 2 0 0 0 

1 2 0 0 0 

3 1 2 0 0 

3 3 1 2 1 

3 1 2 1 2 

(a) 

 
(b) 
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(c) 

 
Fig. 1: Grey-level co-occurrence of matrix (GLCM) illustration for 2-bit grey-level SAR image – (a) grey values in a 5X5 sliding 
window. (b) Resulting GLCM left pair direction, pair distance 1. (c) Resulting GLCM right pair direction, pair distance 1. 

……………………………………………………………………………………………… 
 

However, this grey-level co-occurrence matrix window (in the wake of re-binning dim qualities to, e.g., 64 dim 

levels) represents one of the histogram pixel set processes on SAR image region. This operation can be selected 

based on the image region of two neighbouring pixels, with a settled inter-pixel separation of the two pixels and 

altered introduction of the pair pixels [38]. The subsequent histogram operation could be done on geometric request 

of image pixel values, is the assumed GLCM. As half the outline for the GLCM of one 5 X 5 sliding window is 

shown in following Figure- 1. 

 

Thus, the altered inter-pixel separation is specified image region on one of pixel, is processed from left and right 

pixel values. Which can be shown as the above illustration of GLCM pair axis with introduction about the image 

region of left and right pixel values. The other conceivable introductions for the inter-pixel separation contain no 

further measurable data and are subsequently not generally processed (cf., [35]). For this processing performs the 

operation to designing the frameworks for four bearings are then included and the subsequent grid is signified by (C 

(i, j)). On this joined grid (C (i, j)), we process the five normal GLCM highlights: 

 

1) Entropy  2) dissimilarity  3) contrast 4) homogeneity  5) energy 

 

Entropy:   )2....(....................)),(log(),(
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Energy:   
ji

jiCE
,

2 )6.....(....................).........,(  

 

The texture extracting features algorithm was computed using the IDL programming language (IDL 5.0) and run on 

a HP Core i5 machine utilizing one CPU core. In this computation operation is performed using the ERS-2 SAR 

image for texture information extraction. For this analysis, each ERS-2 SAR image is computing time is up to 10 

min for our texture features extraction [43]. And, its processing of all bands was near real-time results and that data 

processing is done through the satellite station using remote sensing techniques. 

 

NEURAL NETWORK CLASSIFICATION 
 
In this paper, the classification is used a neural network classifier and it has been shown without prior knowledge of 

data. But, the classification inconsistency is superior than the statistical methods. Especilly, it is used for dynamic 

neural network adoptation for classification of image region. In particularly, this phenamenon is used for image 

region of the object detection and classification. The ocean region monitoring is a major aspect for object 

identifying, which is based on the part of very low gravity and gravity–capillary waves (from one centimeter to 

decimeteres). The locality of an oil slick on the ocean surface moistures is categories of influences in light of the 

echo sort conduct of the thick versatility surface movies portrayed by the Marangoni damping hypothesis [25], [29]. 

So, this is the vicinity of an oil slick on the ocean surface radically decreases the deliberate backscattering vitality of 

ocean region, bringing about darker regions in SAR symbolism. In any case, the monitoring image investigation is 

required in light of the fact that dim territories may likewise be created by locally low winds or by normal ocean 

slicks, as appeared in Figure – 2, where diverse concurrent occasions, which may bring about low backscattering, 

are noticeable. 

 

Basically, the most of SAR image classifiers having three steps: first pre-processing the SAR image, second to 

extracting the features from selected SAR image region, and finally, classify the SAR image region as follows: 

 

Step 1: In this step, we processing to remove the background of an SAR image and performs normalization 

opearation. 

a. Initially, it eliminates the background noise from the SAR image using region based segmentation 

method. 

b. And, then the SAR image size is converted for normalizing the neural network classier. 

Step 2: In this step, we performing the feature extration as an oil spill or look-alike and their appropriate 

extraction of texture feature values. 

a. At starting of this process is proforming single-level transformation, that is narmolized image 

acquazation of shape and texture information from the SAR image. 

b. Then, it is based on the RGB color component model to using the image pixel intensity values. 

c. Finally, we choose the two opposite corner in SAR image region to joining, that is given for the 

better classification results from different texture features on image and also, this step extracting 

a physical feature intensity values with two appropriate points. 

Step 3: finally, this step was performing the classification method based on the neural network classifier 

operation. For this using 12 values of physical stuctural features from the existing knowledge base system. 

a. This module performs the neural network classifier operation, that is trained from input SAR 

image data using the knowledge data base. 

Algorithm for oil spill detection  

 

The neural network analysis was utilized as a part of this study on looks like from the one officially depicted in [36]. 

A self-loader apparatus permits the extraction of some remarkable components which portray the chosen dull spot in 

the picture and that will be incorporated into the neural netwrok system as an information vector. These information 

vector elements are differenciating into three unique sorts. Some of them contains data on the backscattering force 
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(ascertained in dB) inclination along the outskirt of the dissected dim spot: Max Gradient (Gmax), Mean Gradient 

(Gme), Gradient Standard Deviation (GSD); others concentrate on the backscattering oblivious spot and/or out of 

sight: Object Standard Deviation (OSD), Foundation Standard Deviation (BSD), Max Contrast (ConMax), Mean 

Contrast (ConMe); a third classification considers the geometry and the state of the dim spot: Area (A), Perimeter 

(P), shape Complexity (C), Spreading (S) regarding a longitudinal hub. More exact definitions can be found in [38]. 

 

 
 
Fig: 2. Different analysis events were caused a reduction of the energy backscattering © ESA  

……………………………………………………………………………………………… 
 

Mainly, the ERS-2 SAR image archives over the environment of dark spot, is classified as oil spill or look-alike. For 

example, number of ground-truth values are available, else the discrimination was based on the independent decision 

making analysis of ERS-2 SAR images. The main statistical decision parameters are described from the extracted 

features of ERS-2 SAR image data values are show in Table - I. 

 

In this proposed method, additionally considering the image object feature information is derived from the local 

wind speed vectors. This can be performed using backscattering gravity capillary waves and then the strong 

influence can appear as an oil slick on SAR image. It can be considering the wind speed conditions (i.e., less than 2-

3 m/s) and it can be visualize based on the wind nature. Naturally, the wind speed is greater than 7-8 m/s and less 

than 15 m/s to identifying the slicks are appeared as an oil spill or look-alike. But, the wind speed computations are 

done by the inversion of CMOD4 model, it can be modelled by ESA to transforming the wind vectors from the 

ERS-2 SAR C-band measurements. 
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Table: I – The Main Decision Parameters in ERS-2 SAR Data about oil spill or look-alike classification  
 

Feature 

Oil Spill  Look-alike 

Max Min Mean SD  Max Min Mean SD 

A (Km2) 32.94 0.30 4.40 5.89  146.31 0.43 14.91 23.80 

P (Km) 142.89 2.31 23.26 25.72  304.03 4.23 47.22 54.67 

C 7.03 0.93 2.93 1.43  7.54 1.27 3.54 1.45 

S 36.15 0.00 6.62 7.87  39.05 0.00 11.86 10.62 

OSD (dB) 4.58 0.72 1.99 0.74  4.87 0.61 2.43 0.94 

BSD (dB) 1.97 0.62 0.92 0.22  4.12 0.88 1.60 0.52 

ConMax (dB) 17.85 4.21 9.51 3.09  18.56 4.77 12.45 2.87 

ConMe (dB) 12.71 1.62 4.76 2.01  11.92 1.55 6.52 2.26 

GMax (dB) 15.19 3.21 7.43 2.57  15.41 3.92 9.01 2.81 

Gme (dB) 7.42 1.42 2.92 1.12  6.32 1.24 3.24 1.12 

GSD (dB) 3.07 0.63 1.49 0.56  3.01 0.60 1.77 0.65 

WS (m/s) 7.16 2.09 3.52 0.72  10.23 1.61 3.01 1.33 

 

For this analysis many challenges have been initializing to accurately well excellent the number of units to be 

considered in the hidden layer of neural network. This topology 12-4-4-1 is shown in below Figure - 3. And finally 

this performance analysis should be in terms of both classification accuracy and training data set time. 

 

The traditional neural network training method is as target vectors and then deciding class membership functions 

based on the maximum features are extracted from the selection of image region. It can be processed in the sense of 

the Bayesian optimal neural network classifier. Even though, the neural network assumes based on the network 

global weight space and its global minimum solution, that can be modelled from the specified network topology. 

And also, the neural network classification pattern can be considering as a non-parametric method for estimation of 

probabilities. This estimation process is considering the heuristic view of essential characteristics and its 

interpretation of level-of-confidence. From these concepts the classification confidence error estimating probability 

depends on the maximum occurrence of object features. These estimation processes are clearly performed on the 

specific network structure, hidden layer weights, as well as the dynamic learning strategies and its network topology 

consistency of image.  

 

This provide a huge quantitative about the measuring directions in differentiating the input image distributions. This 

choice is defined as Kullback-Leibler distance strategy in [42]. And also, measuring the neural network 

approximation of given Bayesian classifier from specified region of image. Note, this function is differentiating the 

actual distance of the image region as well as image posterior knowledge base. 
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Fig: 3. Illustration of neural network classification topology  

……………………………………………………………………………………………… 
 

 

However, the neural network has been trained to return 1 i.e., specifies the dark spot as an oil spill, otherwise it is a 

look-alike. For responsible of training dataset procedure should be stopped according to the “stopping algorithm” 

[38]. As indicated by this calculation, the execution of the net amid the preparation (knowledge) stage be present 

assessed either on the preparation set or on an alternate free approval set. In the preparation set the general error in 

the recovery of the right yield continues diminishing with the preparation, drawing nearer an estimation of joining. 

On the other hand, the error on the approval set achieves a base quality after which it will begin expanding on the off 

chance that we proceed with the preparation. As of now the present learning stage must be interrupted, while 

validation of the errors. The dependence of the error on the quantity of periods (preparing cycles) for the preparing 

and the approval set is appeared in Figure- 4. 

 

After the preparation taking into account the learning set and applying the "early ceasing" calculation we discovered 

a root mean square blunder (rmse) of 0.227 on the test set (3 mis-classified samples out of 60). 

 

 

 

Hidden Layers 

Output 

Layer 

Input Layer 
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Fig: 4. The total number of training dataset cycles to be dependence of the errors for training and validation test 

……………………………………………………………………………………………… 
 

Sensitivity Analysis 
 

As talked about in [39], the unwavering quality of the qualities for the components figured by the self-loader 

apparatus relies upon the capacity of the client dealing with installed edge discovery utilities. In this point of view, 

the sensitivity analysis completely programmed based on instruments and then the sensible analysis is assuming that 

the S/N proportion describing the estimations of elements might be smaller. For this situation, the determination of 

inputs from the neural network system, on the base of adequacy of their image data content in assessing the yield, 

may be prescribed to arrange of misdirecting inputs. These system operations with less inputs and has less versatile 

parameters to be resolved, which require a littler preparing set to be valid constraints. This system prompts are 

enhanced with speculation properties that giving smoother mappings. Likewise, a system with less weights may be 

speedier to prepare. 

 

In the endeavour to look at which includes, in the picked setting, contain less data for the arrangement assignment 

we considered two routines. In a first investigation we assessed the system execution, both regarding the RMSE and 

the misclassification rate, for 12 distinct situations where, on turn, one of the parts of the at first considered 

information arrangement was absent. In a brief moment examination, we delayed the pruning system (portrayed 

before) to the information layer [40], [41], [42], until 11 of the 12 segments of the data vector were evaluated (we 

remind that an info or concealed unit is uprooted when it has lost every one of its associations). 

 
CONCLUSION AND FUTURE WORK 
 
This study takes after the work portrayed where the possibilities. The paper concludes with efficient results which 

recognises the oil spills in satellite SAR symbolism using gray level co-occurrence matrix (GLCM) based texture 

feature of neural networks. Thereby, the computational procedure focuses on local wind speed direction on the SAR 

images and provides an additional information about the ERS-2 SAR image as an input for neural networks known 

to evolution of the oil spills. 

 

The future work deals with local low wind speed for knowledge based system which is significant for short gravity 

and the gravity-capillary waves. Finally, the low wind speed can strongly influence the appearance of the oil spill in 

a SAR image effectively. 
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