
SPECIAL ISSUE: ASPM
Basthikodi and Ahmed

| Basthikodi and Ahmed 2016 | IIOABJ | Vol. 7 | 3 | 20–28 20

 w
w

w
.iio

a
b

.o
rg

 w

w
w

.iio
a
b

.w
e
b

s
.c

o
m

C

O
M

P
U

T
E

R
 S

C
IE

N
C

E

| Guest Editor | Prof. S. L. Fernandes |

SPECIES GENERATION FOR PARALLEL CODE BY CLASSIFYING THE
ALGORITHMS
 Mustafa Basthikodi1 and Waseem Ahmed2
1Research Scholar, Dept. Of CSE, BIT, Mangalore, INDIA
2Dept. Of CSE, HKBKCE, Bangalore, INDIA

ABSTRACT

*Corresponding author: Email: mbasthik@gmail.com Tel: +919844535720 Fax: +91-8242235775

INTRODUCTION

In the past few decades, we have seen a tremendous growth of single-core processor performance. This growth
has enabled technology to exist everywhere in the society. To overcome the limitations in the performance of the
single-core processor parallelism is exploited. Enabled by the Moore’s law, large number of processors per chip
(i.e. multi-core) is already a major trend and expected to continue for the next decade [1].

When multi-core is expected to grow 100-core processors by 2020 [1], other trend already enables larger than
2000 cores. This trend (many-core) uses much smaller processing cores, making high throughput parallel
processors. An example for such a many-core processor is GPU. Even though many-core processors are suitable
for a certain types of applications, other applications may prefer multi-core processors. This creates a
heterogeneous environment, with dual types of processors in single system or a single chip.

The multi core architectures enabled performance growth of processors by introducing the parallelism in
programs. Because of the heterogeneous computing environment and parallelism, the parallel architectures face
challenges in code development and in predicting the performance of the processor. Even though there is amount
of research work carried on compilers, parallelization and automatic parallelization, programmers use
programming languages such as OpenMP, OpenCL and MPI. Determination of the parallel program performance
is needed to check whether the parallelization is required and which part of the program to be parallelized. All the
available auto parallelization solutions are not fully automatic. Because of the revolutions in the hardware
technologies, such diversified platforms and the need of programming the hardware efficiently has increased the
programming models accordingly. The programming models such as Intel TBB[2], OpenACC [3], OpenMP [4],
OpenCL [5], Nvidia CUDA [6] and OpenHMPP [7] are some of the models presently available for parallel
programmers for writing the applications.

Present trends in the parallel architectures are largely towards the bigger number of processing devices on the
chip. This led to the parallel architectures growing as mainstream, with the growth of many specialized multi-core
architectures and accelerators. The problem of programming with these architectures effectively using several
processing elements [8] is a biggest challenge. There are many approaches [9] to address this issue. The one that

Many-core and multi-core systems are expected to be major trends for the future decades. In this way of
parallel computing, it may become great difficult to choose on which target architecture to execute a
certain algorithm or application. Many core machines along with GPUs increased the extensive amount
of parallelism. Some compilers are updated to emerging issues with respect to the threading and
synchronization. Proper classification of algorithms and programs will benefit largely to the community of
programmers to get chances for efficient parallelization. In this work we have analyzed the existing
species for algorithm classification, where we discus s the classification of related work and compare the
amount of problems which are difficult for classification. We have selected set of algorithms which
resemble in structure for various problems but perform given specific tasks. These algorithms are tested
using existing tools such as Bones compiler and A-Darwin, an automatic species extraction tool. The
access patterns are produced for various algorithmic kernels by running against A-Darwin and analysis is
done for various code segments. We have identified that all the algorithms cannot be classified using
only existing patterns and created new set of access patterns.

Received on: 24th-Dec-2015

Revised on: 27th-Jan-2016

Accepted on: 04th -Feb-2016

Published on: 17th -Apr -2016

Index Terms— Algorithm
Classification, Access Patterns,

Bones, A-Darwin, Parallel
Programming.

KEY WORDS

ISSN: 0976-3104

ARTICLE OPEN ACCESS

SPECIAL ISSUE: ASPM

| Basthikodi and Ahmed 2016 | IIOABJ | Vol. 7 | 3 | 20–28
 21

 w
w

w
.iio

a
b

.o
rg

 w

w
w

.iio
a
b

.w
e
b

s
.c

o
m

C

O
M

P
U

T
E

R
 S

C
IE

N
C

E

is very challenging is the automatic parallelization. Many difficult applications often spend most of their run time
in the nested loops. This is most common in many of the engineering and scientific applications.

The idea of auto parallelization is to free programmers from the error-prone and the time consuming manual
parallelization process. Even though the automatic parallelization process has improved its quality in the last few
decades, completely auto parallelization of the serial programs by translators remains a biggest challenge because
of its need for the complicated program analysis and unknown facts during compilation process. The focus of the
automatic parallelization is on programming control structures such as loops, because, maximum of the run times
of a program is taken inside some of the loops. For example, an algorithm for the parallel loop identification may
be integrated in the parallelization platform as shown in the diagram below which converts automatically serial
code in to parallel code.

The front end view of the classification of the algorithm is shown in Figure– 1. The figure indicates how
classified source code can be parallelized automatically to parallel source code. The figure also shows how the
serial code can be compiled in to a parallel code, how to predict the performance. Our focus is on Algorithm
Classification part in Figure– 1. The overall system will be given with serial code as a input and produces output
as parallel program.

Fig: 1. Front end view of the Algorithm Classification.
………..

In this work, the existing classification of algorithms [10], ‘Algorithmic species’ that summarizes significant data
for parallelizing the algorithm based on classes is studied in depth by compiling various code segments in
BONES[11] compiler. The access patterns are generated using ADARWIN and analyzed for different algorithmic
kernels.
We retake ‘algorithmic species’ a access pattern based classification of algorithms [12], and created a increased
set of patterns, that summarizes significant data for parallelizing the algorithm based on classes.

The theory behind algorithmic species is subject to the polyhedral model, requiring code to be represented as a set
of static affine loop nests. Characterization of array references is introduced with respect to loop nests.
Transformations are defined to merge characterizations referring to the same array and to translate them into
algorithmic species, allowing classification of non static affine loop nests. The classification is subject to the
more detailed abstractions that retain additional performance-relevant information and that take the loop nest
structure into account. A tool is modified based on the presented theories to automatically classify program code.

MOTIVATION

The change towards diverse and parallel computing conditions has made programming the challenging tasks.
Making complete use of multi-threading and using efficiently memory hierarchy of a processor are the best
examples of issues faced by programmers and compilers where programmers looking for a manual solution and
compilers looking for an automated solution. We recommend that the classification of algorithms can largely
reduce those tasks for compilers and programmers.

We encourage programmers to use an classification of algorithms as a tool to make parallel programming easier.
This can help the programmers in identification of problems similar to same class of algorithms and identify
available parallelism by applying known parallel patterns.

Serial
Program
s

Algorithm Classification

 Manual Classification

 Manual + Automatic
Classification

 Automatic Classification

Performance

Prediction
Parallelizing

Compilers

Parallel

Programs

SPECIAL ISSUE: ASPM

| Basthikodi and Ahmed 2016 | IIOABJ | Vol. 7 | 3 | 20–28
 22

 w
w

w
.iio

a
b

.o
rg

 w

w
w

.iio
a
b

.w
e
b

s
.c

o
m

C

O
M

P
U

T
E

R
 S

C
IE

N
C

E

We visualize classification of algorithms as way that facilitates communication between programmers to describe
computational issues. This also facilitates design and improves compiler’s quality, for example, automatic parallel
compilers, source code to- source code compilers, and automatically tuning compilers.

The classification of algorithms that describes the characteristics of algorithm in destination framework shortens
many of the architecture related issues. The decisions taken by the underlying compiler for parallelizing the code
will be on the data attached in algorithm classes. These will largely solve the problem of compiler designs.
The categorization does not change around time and new feature code may be created when the tools lodge to the
changes in the feature hardware. We shun an algorithm categorization as a suitable tool to meet face to clash the
futuristic and infinity challenges in parallel computing.

More ever, the algorithm classes may contain in a superior way the algorithm information than is presently
available to a compiler that may cause to increase the quality of code. We devise the classification of algorithm to
adopt a mean compiler study technique, by bringing the pedigree of algorithm plan into a common place.
Below given are the requirements that to be considered for the goals to be achieved.

(i) Algorithm classes must be automatically extracted from the source code. If not, the program code may have to
be extracted manually by the compilers. Ultimately, this is not capable of, considering the concern of classes that
may be fault prone and may place a big burden on programmer's head.
(ii) A categorization intend be innate and ethereal to understand. Although we demand classes to be automatically
extracted, we contemplate algorithm to be manually used, as a appliance for programmers.
(iii) The algorithm classes must be defined formally. This will guarantee the compilers correctness, and also
allows programmers to understand completely the class properties and facilitates automatically extract the classes
from source code.
(iv) There should be set boundaries for defining the completeness of algorithm classification, i.e. a single
algorithm must belong to one of the predefined classes.

The classes must involve in it, amount of parallelism, the structure, the data reuse information to produce the code
efficiently. Also provide circumstances to travel through caching and locality.
Keeping in mind the goals and algorithm classification requirements, we glance at the existing classification of
algorithms and check whether our requirements are met.

RELATED WORK

Many algorithmic classifications have been referred before designing the new species. Few of them, with the
similar work are highlighted here. Several algorithms have been discussed by many people, such as the ones
presented by Allen, Kennedy, Darte and Vivien, Wolf, Lam, and Feautrier [13][14][15]. These algorithms uses of
various mathematical notations and tools. Additionally, these do not depend on common representation of the data
dependences. The schemes of transformations for common loops in which dependence vectors express precedence
constraints on the iterations of loops are presented [16][17]. As per the Wolf and Lam presentation, the
dependences extracted from the loop nests must be positive lexicographically. This gives us a simple test for the
legality of compound transformations such as, It is legal to have any code transformation that ignores the
dependences which are lexicographically positive. The theory of loop transformation is applied to the issue of
increasing the degree of coarse-grain or fine-grain parallelism in the loop nests.

Pierre Boulet and Alain Darte surveyed many algorithms on loop parallelization[18], analyzed their dependence
representations, generated loop transformations, the required code generation methods, and capability to
incorporate different optimization techniques such as the maximal detection of parallelism, the permutable loop
detection, the minimization of synchronizations, the code generation easiness, and so on[19][20]. They ended the
study by presenting results which are related to the code generation and loop fusion for the specific class of the
shifted linear schedules.

Most of the existing automatic parallelization techniques are not fully automatic. The parallel computing
introduces challenges in programming and compilation both. The work in [21] introduced the challenges in
parallel computing and algorithm classification. It explains the algorithmic species that captures algorithm details
from single loop or nested loops and loop bodies. Five access patterns that combine to an algorithmic species are
illustrated along with the examples. One of the five access patterns is assigned to each array, accessed in the loop
nest. The access patterns combination, of input and output data of the nested loop, forms the species. This

SPECIAL ISSUE: ASPM

| Basthikodi and Ahmed 2016 | IIOABJ | Vol. 7 | 3 | 20–28
 23

 w
w

w
.iio

a
b

.o
rg

 w

w
w

.iio
a
b

.w
e
b

s
.c

o
m

C

O
M

P
U

T
E

R
 S

C
IE

N
C

E

approach enables to form an unlimited number of species with the use of only five access patterns. The limitations
of the approach are highlighted below.

First, the paper uses the polyhedral model, which imposes limits to the program code, which are classified.
According to the paper, for loops to be classified must have static and affine loop bounds and the loop bounds
must remain constant throughout the scope of the loop. Second, the array accesses are affine and explicit, the
pointer arithmetic is not supported in the approach. This also requires that the multidimensional arrays are
explicitly addressed per dimension instead of a flat array with an index calculation. Third, the extraction tool
ASET used by the author works only for C code, although the species is program language independent. Fourth,
The tool ASET considers fully filled iteration space polyhedra in classifying loops and no gaps in the iteration
space are supported, which means loops must have stride 1. Fifth, all the program structures (e.g. multiple
initializations in loop nest, conditional statements within loops, programs with statements in between algorithmic
species, etc) are not supported in ASET which limits the number of statements of various types to be addressed.

PARALLEL ACCESS PATTERNS

The array access patterns element, chunk, neighborhood, full and shared, where, the input arrays are assigned
either one of the five patterns whereas the output arrays are assigned either one of the patterns, excluding
neighborhood. If an array is accessed from element 0 to 127 it might be that some of the elements in this range are
not accessed at all. The same holds for neighborhoods and chunks, partial neighborhoods or partial chunks are still
classified as neighborhood or chunk. In addition to these five patterns, We introduce species variant, constant,
compare and update to deal with the programming statements such as variable and constant initialization,
comparison statements, increment and decrement statements.

 Listing 1: An example for constant initialization in doubly nested loop

We show an example algorithm, in Listing 1, where all loop iterations are independent and these may be executed
parallelly. The amount of parallelism is equal to the number of loop iterations and is denoted as parallel(256,256).
The loop body consists of initialization statement which assigns constant to array variable p[i][j]. The constant
number is input and the two dimensional array p is output in this algorithm. The array is accessed at index 0 to
256 in both the dimensions. When we combine the input and output, their access range and their array access
pattern, we find the algorithmic species as:
 parallel(256,256) constant --> p[0:256,0:256] | element

Here, output array is accessed element-wise and that the combination of array names, ranges and access type
defines the algorithmic species of this algorithm.

 Listing 2: An example for comparison in triple nested loop

The Listing 2 shows an example of a triple nested loop with comparison and assignment operations. The matrix p
elements are compared and the maximum of compared elements is assigned to p[i][j]. The algorithm produces
each element of result p by comparing with two elements of same matrix every time. Finding the maximum of two

for(k=0;k<=128;k++){

 for(i=0;i<=128;i++){

 for(j=0;j<=128;j++){

 p[i][j]=max(p[i][j],

p[i][k]&&p[k][j]);

 }

 }

 }

for(i=0;i<=256;i++){

 for(j=0;j<=256;j++){

 p[i][j]=999;

 }

 }

SPECIAL ISSUE: ASPM

| Basthikodi and Ahmed 2016 | IIOABJ | Vol. 7 | 3 | 20–28
 24

 w
w

w
.iio

a
b

.o
rg

 w

w
w

.iio
a
b

.w
e
b

s
.c

o
m

C

O
M

P
U

T
E

R
 S

C
IE

N
C

E

elements of the matrix is classified as compare and the result produced as element. The resulting species is given
below:
parallel(128,128,128) (p[0:128,0:128], p[0:128,0:128]) | compare p[0:128,0:128]|element

The species can be understood as: in order to create an element of p in the range from 0 to 128 we need to
compare two elements of matrix p with row and column length 128 each. This pattern-combination of ‘compare
and producing element’ can be performed in parallel a total of 128 times each. Consider the following example
algorithm for illustrating the access pattern variant.

 Listing 3: An example for comparison and initialization in doubly nested loop

In order to initialize the matrix element V[i][j], the variables i and j are compared with zero . The variable
initialization, comparison and constant initializations are classified as the patterns variant, compare and constant.
The variables i and j are accessed from 0 to 64 and accordingly the output elements can be produced in parallel.
The algorithmic species is constructed as shown below:
 parallel(65,65) variant[0:64],constant | compare V[0:64,0:64] | constant

Here, to produce every element of V, which is constant, is compared with the constant value. Where, V is variable
with index ranging from 0 to 65 and is classified as variant.

 Listing 4: An example for reduction to scalar element

In listing 4, illustrated the example of reducing sum of two vectors in to a scalar quantity. Here, the index of
vector A ranges from 0 to 7 and B ranges from 2 to 9. In every iteration, the element of A and B are added and the
output variable res is updated. This operation of incrementing the value for every iteration of the loop is classified
as the pattern update. The algorithmic species for the listing 4 is constructed as below:
parallel(8) A[0:7] | element ^ B[2:9] | element res| update

IMPLEMENTATION AND RESULTS

This Bones and A-Darwin along with required gems are installed in quad core system for experimentation. Bones

is the source-to-source compiler that is designed based on algorithmic skeletons and the algorithmic species. This

compiler takes as input C-code and generates parallel code as output. Target processors include NVIDIA GPUs

for CUDA, AMD GPUs for OpenCL and CPUs for OpenCL and OpenMP [22][23]. The Bones compiler is based

on CAST C-parser , which is used to parse input source code into the AST (Abstract Syntax Tree) and to generate

desired code from the transformed abstract syntax tree.

A-Darwin (short for `automatic Darwin') is automatic extraction tool, which is based on CAST, a C99 parser

which allows analysis on AST. From the AST, the tool extracts the array references and constructs a 5 or 6-tuple

for each loop nest. Following, merging is applied and the species are extracted. Finally, the species are inserted as

pragmas in the original program code.

The code segments of various algorithm classes are executed to analyse the output of A-Darwin.

for(i=0;i<8;i++){

 res+=A[i]+B[i+2];

 }

for(i=0;i<=64;i++){

 for(j=0;j<=64;j++){

 if((i==0)||(j==0))

 V[i][j]=0;

 else V[i][j]=-1 ;

 }

 }

SPECIAL ISSUE: ASPM

| Basthikodi and Ahmed 2016 | IIOABJ | Vol. 7 | 3 | 20–28
 25

 w
w

w
.iio

a
b

.o
rg

 w

w
w

.iio
a
b

.w
e
b

s
.c

o
m

C

O
M

P
U

T
E

R
 S

C
IE

N
C

E

 Fig: 2. Output of A-Darwin for listing 1

………..

The output for listing1 in Figure–2 shows that the constant initialization is not taken care. The pattern 0:0 | void -

> p[0:256,0:256] | element could be written according to new proposal as: constant -> p[0:256,0:256] | element

Fig: 3. Output of A-Darwin for listing 2

………..

The output for listing2 in Figure–3 shows that the comparison operation is not concentrated during pattern

generation. The pattern p[0:128,0:128] | element ^ p[0:128,k:k]|element ^ p[k:k,o:128]|element -> p[0:128,0:128] |

element could be written according to new proposal as: (p[0:128,0:128], p[0:128,0:128]) | compare ->

p[0:128,0:128]|element

Fig: 4. Output of A-Darwin for listing 4

………..

The output for listing4 in Figure-4 shows that the updation of variables such as increment is not addressed

properly. The pattern A[0:7] | element ^ B[2:9]|element -> 0:0 | void could be written according to new proposal

as: A[0:7] | element ^ B[2:9]| element -> res| update

SPECIAL ISSUE: ASPM

| Basthikodi and Ahmed 2016 | IIOABJ | Vol. 7 | 3 | 20–28
 26

 w
w

w
.iio

a
b

.o
rg

 w

w
w

.iio
a
b

.w
e
b

s
.c

o
m

C

O
M

P
U

T
E

R
 S

C
IE

N
C

E

We have executed and analyzed 50 kernels of 15 algorithmic classes using Bones Compiler and A-Darwin tool.

We have found that there are few kernels of various algorithmic classes for which A-Darwin is not considering all

the possibilities of code.

Table: 1. Hit Ratio for Algorithm Classed considering multiple kernels of each class

The evaluation of the algorithms listed in Table– 1 is done by running the specified number of kernels in each

algorithmic class mentioned. The third column Hit Ratio is the amount of kernels executed successfully, i.e. the

percentage of kernels for which patterns are generated accurately. We have executed 4 kernels of the Arithmetic

and Logic algorithmic class, out of which 3 kernels successfully executed resulting 75% of the hit ratio. Similarly

two kernels each from 1 D convolution, Floyd algorithm, Warshals algorithm, Horspool algorithm are considered

for execuion, resulting the hit ratio of 100%, 50%, 50%, 50% respectively. The three kernels each from MinMax

Computation,Kruskals algorithm, knapsack algorithm, 2mm and 3mm algorithmic classes are executed resulting

the hit ratio of 67%,67%,67%, 100% and 100% respectively. The four kernels each from computer vision

,Bankers , K-means and Jacobi algorithmic classes are executed resulting the hit ratio of 75%, 75%, 75% and

100% respectively. The seven kernels from sorting algorithmic classes are executed to achieve the 72% of hit

ratio.

Fig: 5. Graph illustrating the Hit Ratio of kernels for algorithmic classes

………..

The chart in Figure–5 illustrates the Hit Ratio of the kernels for 15 different algorithmic classes. There are few

kernels having statement like comparisons, conditional statements, mathematical functions comes under miss

ratio.

Algorithmic Class Kernels Hit Ratio

Arithmetic and Logic 4 75%

1 D Convolution 2 100%

Computer vision 4 75%

MinMax
Computation

 3 67%

Floyds 2 50%

Warshals 2 50%

Horspool 2 50%

Kruskals 3 67%

Bankers 4 75%

Knapsack 3 67%

 K-Means 4 75%

 Jacobi 4 100%

 2mm 3 100%

 3mm 3 100%

 Sorting 7 72%

SPECIAL ISSUE: ASPM

| Basthikodi and Ahmed 2016 | IIOABJ | Vol. 7 | 3 | 20–28
 27

 w
w

w
.iio

a
b

.o
rg

 w

w
w

.iio
a
b

.w
e
b

s
.c

o
m

C

O
M

P
U

T
E

R
 S

C
IE

N
C

E

CONCLUSION AND FUTURE WORK

The Automatic parallelization is needed to make manual programmer to write the programs without errors and save

the time comparatively. In this work, we have analyzed the existing access patterns thoroughly and listed out many

of the kernels those cannot be classified based on these patterns. The new access patterns are designed in order to

improve the classification ratio.

The A-Darwin source code is modified to incorporate the changes to tool by adding the new functionalities.

Currently the tool is working for the additional access patterns. The work is carried to include more number of

mathematical functions which maximize the hit ratio for algorithmic classification. The present work is also based

on the array references. So, the final work will be to classify the algorithms based on pointer references.

CONFLICT OF INTEREST
Authors declare that there is no conflict of interest.

ACKNOWLEDGEMENT
None.

FINANCIAL DISCLOSURE
No financial assistance received during my research work.

REFERENCES

[1] B Catanzaro, A Fox, K Keutzer, et al. [2010], Ubiquitous

Parallel Computing, IEEE Micro, 30:41–55.

[2] C Pheatt. [2008] Intel threading building blocks, J. Comput.

Sci. Colleges, 23(4):298–298.

[3] S Wienke, P Springer, C Terboven, D an Mey.[2010]

OpenACC:First experiences with real-world applications, in

Proc. 18th Int. Conf. Parallel Process., 859–870.

[4] L Dagum and R Menon. [1998] OpenMP: An industry standard

API for shared-memory programming, IEEE Comput. Sci. Eng.,

5(1): 46–55.

[5] JE Stone, D Gohara, and G Shi. [2010] OpenCL: A parallel

programming standard for heterogeneous computing systems,

Comput.Sci. Eng.,12(3): 66.

[6] J Nickolls, I Buck, M Garland, and K Skadron.[2008] Scalable

parallel programming with CUDA, ACM Queue, 6(2): 40–53.

[7] R Dolbeau, S Bihan, and F Bodin.[2007] HMPP: A hybrid

multicore parallel programming environment, in Proc.

Workshop General Purpose Process. Graph. Process. Units.

[8] Wolf ME.[1998] A loop transformation theory and an

algorithm to maximize parallelism, Computer System Lab,

Stanford University., CA, USA Lam, M.S.

[9] Pierre Boulet, Alain Darte. [1997] The parallelization

Algorithms for loops: parallelism extraction to code generation.

Technical Report 97–17, LIP,ENS-Lyon, France.

[10] PJJM Custers. [2013] Algorithmic Species: Classifying

Program Code for Parallel Computing, Electronic Systems

group, Eindhoven University of Technology.

[11] H Corporaal, C Nugteren. [2012] Introducing ‘Bones’: A

Paralleliz-ing Source-to-Source Compiler Based on

Algorithmic Skeletons, GPGPU-5: The Workshop on General

Purpose Processing on Graphics Processing Units. ACM.

[12] Kathryn S McKinley, Ken Kennedy.[1994] Improving data

locality and maximizing loop parallelism via loop fusion and

distribution” ,Springer.

[13] M Wolfe. [2010] Implementing the PGI Accelerator Model, in

GPGPU-3: Workshop on the General Purpose Processing on

Graphics Processing Units. ACM.

[14] Paul Feautrier.[1992] Some of the efficient solutions to the

affine scheduling problem, International Journal on Parallel

Programming :313–348.

[15] Paul F.[1992] Some of efficient solutions to the affine

scheduling problem, Part II: multi dimensional time,

International Journal on Parallel Programming:389–420.

[16] Frederic Viven, Alain Darte. [1996] A Optional line and

medium grain parallelism detection for polyhedral reduced

dependence graphs, PACT’96, Boston, IEEE.

[17] Johnson R, Beck K. [1994] Patterns generating architectures,

The European Conference on Object- Oriented Programming:

821. Springer, 139–149.

[18] K Kennedy, R. Allen. [2002] Optimization of Compilers for

Modern Architectures, Morgan- Kaufman.

[19] Thomas Holl, Dirk Heuzerot, Gustav Hogstrom. [2003]

Automatic design pattern detection: IWPC-03:IEEE ,

International Workshop, page 94,Washington, DC, USA.

[20] Monica S Lam, Micheal E Wolf. [1991] Loop transformation

theory and an algorithm to maximize parallelism. IEEE,

Parallel Distributed Systems :452–471.

[21] CW Kessler, J Enmyren. [2010] SkePU: A Multi-backend

Skeleton Programming Library for Multi-GPU Systems,in

HLPP ’10: 4th International Workshop on the High-level

Parallel Programming and Applications. ACM.

[22] Mustafa B, Waseem Ahmed. [2014] Parallelization Approaches

using OpenMP for Strassens Matrix Multiplication and Canny

Edge Detector, International Journal of Information

Processing(IJIP),8(4):89–97,ISSN: 0973–8215.

[23] Mustafa B, Waseem Ahmed. [2015] Parallel Algorithm

Performance Analysis using OpenMP for Multicore Machines,

International Journal of Advanced Computer

Technology(IJACT), 4 (5):ISSN: 2319–7900.

SPECIAL ISSUE: ASPM

| Basthikodi and Ahmed 2016 | IIOABJ | Vol. 7 | 3 | 20–28
 28

 w
w

w
.iio

a
b

.o
rg

 w

w
w

.iio
a
b

.w
e
b

s
.c

o
m

C

O
M

P
U

T
E

R
 S

C
IE

N
C

E

ABOUT AUTHORS

Mustafa Basthikodi was born in Mangalore, India, in 1979. He received the B.E. degree in
Computer Science and Engineering from the Mysore University, Mysore, India, in 2001, and the
M.E. degree in Computer Science and Engineering from the Bangalore University, Bangalore in
2008. Currently Pursuing PhD in High Performance Computing and Embedded Systems from
Visvesvaraya Technological University (VTU), Belgaum. In 2001, he joined the Department of
Computer Science & Engineering, PACE, Mangalore, as a Lecturer, and worked till 2006. From
2006 to 2008, He worked as Senior Lecturer in Department of Computer Science & Engineering
in SJBIT, Bangalore. In 2008, He joined IBM as Senior Software Engineer and worked till 2010.
Since 2010, He is working as Associate Professor and Head, Department of Computer Science &
Engineering, in BIT, Mangalore. He has published in various National and International
Conferences. He has received few best technical paper awards and also Best performer award in
industry. He has also worked as Technical Programme committee member for the various
conferences. He is a Life Member and resource person for Computer Society of India. His
subjects of Interest include High Performance Computing & Embedded Systems, Green & Cloud
Computing, Compiler construction tools & technologies.

Dr.Waseem Ahmed is currently a Professor in the Department of CSE at HKBK College of
Engineering, Bangalore. Prior to this he has been served at different capacities in academic/work
environments in the USA, UAE, Malaysia, Australia and India. He obtained his BE from RVCE,
Bangalore, MS from the University of Houston, USA and PhD from the Curtin University of
Technology, Perth, Western Australia. He has published extensively in various reputed
International Journals and Conferences. He is a reviewer for various IEEE/ACM Transactions and
magazines. His current research interests include heterogeneous computing in HPC and
embedded Systems. He is a member of the IEEE.

