
SPECIAL ISSUE 
Kumar et al. 
_______________________________________________________________________________________________________ 

  
| Kumar et al. 2016 | IIOABJ | Vol. 7 | 2 | 9–24    9  

                           w
w

w
.iio

a
b

.o
rg

                                                                                        
 

   
                                            w

w
w

.iio
a
b

.w
e
b

s
.c

o
m

 
C

O
M

P
U

T
E

R
 S

C
IE

N
C

E
 

| Guest Editor | Prof. Steven Fernandes| 

 

 

FAULT AWARE LOAD BALANCING ALGORITHM FOR CONTENT DELIVERY 
NETWORK 
Prakash kumar1*, Krishna Gopal1, JP Gupta2 
1Department of Computer Science Engineering & IT, JIIT, Noida, INDIA 
2Hydrocarbons Education and Research Society, New Delhi, INDIA 
 
 
ABSTRACT 
        
 

 
 

 
  

 
 

 

 

 

 

 

 
 
 
 
 
*Corresponding author: Email: kprakash91@yahoo.com, Tel: +91-9810292083  

 
 

INTRODUCTION 
 
Recently, the network traffic is exploding with rapid development of internet. Therefore to provide uninterrupted 
services to users and maintain QoS, CDN is required. CDN is a popular solution to balance the load over a 
distributed system which acts as a single system for users. It is among one of the best methods to cope up with the 
increasing demand and an effective solution to support the load of fast growing web applications by adopting a 
distributed network of servers. 
 
CDN has been widely accepted as a method for circulating large amount of content to the users by making several 
redundant copies of content on multiple servers. CDN can solve even high congestion issues occurred due to 
unexpectedly high request rate from clients. There are many issues and parameters which restricts the 
performance of CDN such as issue of load balancing, cost, request traffic, response time. Many proposals [1-3] 
have been proposed to balance load based on Cost, Response time and load on server [4 - 6]. CDN has also been 
designed on the basis of Energy consumption and data transfer rate [3, 7, 9]. These proposals take into 
consideration energy consumed by the server and data transfer rate in the server. So the primary issue that persists 
in CDN is load balancing of request. In this paper, we have proposed a scalable and reliable architecture for CDN 
along with fault aware load balancing algorithm. Although many existing approaches address the issue of load 
balancing in CDN but they do not take into consideration failures at servers which increased with increase in load. 
The proposed algorithm takes into consideration both load and failure over a server and scalability of CDNs. To 
summarize, the proposed algorithm tried to solve the problem of scalability and load balancing in CDN and to 
overcome the drawbacks of existing techniques. 
 

With the increasing use of data sharing, traffic over the internet has increased significantly. There is a 
need to effectively to manage the load over the servers and maintain the overall system performance 
with better Quality of Service (QoS). To maintain better QoS, Content Delivery Network (CDN) is used. 
CDNs offer services that improve network performance in terms of utilizing the bandwidth, improving 
accessibility, maintaining correctness through content replication and reducing load on servers. The 
limitation of existing CDN load balancing algorithms is that it considers servers and the systems as non 
faulty which increases the probability of request been allocated at faulty server. With the increase in 
number of requests, the failure probability increases due to long waiting queue which increases the 
network load and processing time. To overcome this problem, a fault aware load balancing algorithm for 
CDNs is proposed that improves the QoS and reliability of the system. In this paper, the effect of network 
failure on QoS and reliability of the system is studied in the presence of high request rate and network 
traffic. Performance of existing load balancing algorithm is investigated and compared in faulty 
environment. Moreover, the performance of the proposed algorithm is compared with reported 
techniques. The experimental results demonstrate that proposed algorithm provides better robustness 
and resilience to fault without affecting the QoS. Further, a dynamic fault model is proposed and 
implemented which takes care of changing failure probability with load and provided better result as 
compared to static fault models. 

Received on: 18th-June-2015 

Revised on: 20th-July-2015 

Accepted on: 03rd– August-2015 

Published on: 4th-Jan-2016 

 

CDN; QoS; Reliability; Load 
balancing; Fault rate; 

Network load; System load; 

resiliency 

KEY WORDS 

 

ISSN: 0976-3104 

ARTICLE OPEN ACCESS
  



SPECIAL ISSUE  

_______________________________________________________________________________________________________________________  

       

  
| Kumar et al. 2016 | IIOABJ | Vol. 7 | 2 | 9–24     10 

                           w
w

w
.iio

a
b

.o
rg

                                                                                        
 

   
                                            w

w
w

.iio
a
b

.w
e
b

s
.c

o
m

 
C

O
M

P
U

T
E

R
  
S

C
IE

N
C

E
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig: 1. Layered Architecture 

…………………………………………………………………………………………………………….. 

Figure- 1 shows the layered architecture of CDN system with application layer at the top with client end, Then the 
type of CDN services offered. Third layer is management layer which is responsible for resource allocation security 
and load balancing and all other lower layers are standard network protocols and network connectivity. Servers are 
the last entity which remain connected using the networks.   
 
This paper is divided into 5 sections: Introduction, Related Work, Proposed Model, Experimental result and 
Conclusion. Section II discusses the survey of proposed model for load balancing and fault in CDN and their 
drawbacks. In section III, We present proposed architecture and load balancing algorithm. Section IV presents 
Simulation environment and experiment results. Section V finally summarizes the findings and future prospective of 
the proposed architecture. 
 
RELATED WORK 
 
This section focus on the survey of existing load balancing algorithm for CDNs and cloud computing. These 
algorithm aims to reduce the load over the overall system and maintain the overall utilization of system. Cardellini et 
al.[16] proposed a survey on load balancing algorithms and classified them into two categories static and dynamic 
load balancing algorithms. This classification over load balancing algorithm helps in better understanding of 
difference between static and adaptive load balancing algorithms. 
 
Dahlin et al.[17] proposed an least-loaded (LL) load balancing algorithm beast example for dynamic load balancing. 
In this requests are distributed to a server which is least loaded in term of queue length. Here requests are distributed 
to lead loaded server until it is completely saturated. To overcome this response time based algorithm was proposed 
to overcome the drawback of LL. Carter et al.[18] proposed a response time based load balancing algorithm which 
diverts the load to the server with fastest response time.  
 
Manfredi et al.[19] proposed an load balancing taking care of load over the system and the capability of server to 
process the request. In this proposed algorithm each server is assumed to have a fixed queue size and if the queue 



SPECIAL ISSUE  

_______________________________________________________________________________________________________________________   

      

  
| Kumar et al. 2016 | IIOABJ | Vol. 7 | 2 | 9–24     11 

                           w
w

w
.iio

a
b

.o
rg

                                                                                        
 

   
                                            w

w
w

.iio
a
b

.w
e
b

s
.c

o
m

 
C

O
M

P
U

T
E

R
  
S

C
IE

N
C

E
 

length increases load balancing is initiated and a least loaded server with empty queue is selected to balance the 
load.   

  
Javadi et al. [20] discoursed load balancing which takes care of hardware fault based on Byzantine fault, i.e. an error 
in the system may lead to subsequent failure in the system. On the other hand, software failure, which covers request 
because of resource unavailability or high queue length also leads to request failure. In distributed system, failure 
can be correlated with a workload using spatial and temporal correlation between workload type and intensity of 
failure at different servers in short interval of time. Spatial correlation refers to multiple failures occurring on 
different servers in short interval of time. Temporal correlation means skewness of the failure spread over time. 
Where correlation between failure is the time between two consecutive failure .Let Ts( Fi ), Ts( Fj) be the start time 
of failure i , j. Temporal correlation can be calculated as: 
 

Li j=|| Fi + Fj || =| Ts( Fi ) - Ts( Fj) |                        (1) 
 

Ct (L) =                                       (2) 

 
Where ϴ is an adjustable time scale parameter for determining the temporal correlation between two failure events, 
and α and β are positive constants where 
 

              α = β +1                    (3) 
 

A hybrid approach based on random and LL was proposed by Mitzenmacher et al..[15] two random choice 
algorithm (2RC). In this 2 servers are randomly chosen and least loaded among those is selected. This approach is 
beneficial is there are a large number of servers and random choice algorithm help to provide an equal probability of 
a server been selected. 
 
Papagianni en al. [1] proposed similar load balancing algorithms based on cost in which a hierarchical framework is 
proposed which is further evaluated towards an efficient and scalable content distribution over a multi provider 
networked cloud environment, where inter and intra cloud communication resources are simultaneously considered 
along with traditional cloud computing resources. The performance of this proposed framework is accessed via 
simulation and modeling, while appropriate metrics are defined to associate with and reflecting the interests of 
different key players. 
 
Maki en al. [3] proposed a periodic combined-content distribution mechanism to increase the gain in traffic 
localization. This Proposed mechanism automatically optimizes the distribution period by using how long we can 
expect the previous downloaded combined-content to localize traffic. A pictorial view of this model in shown in 
figure 2 below. 

      

 
Fig: 2. Cost based Distribution 

…………………………………………………………………………………………………………….. 



SPECIAL ISSUE  

_______________________________________________________________________________________________________________________   

      

  
| Kumar et al. 2016 | IIOABJ | Vol. 7 | 2 | 9–24     12 

                           w
w

w
.iio

a
b

.o
rg

                                                                                        
 

   
                                            w

w
w

.iio
a
b

.w
e
b

s
.c

o
m

 
C

O
M

P
U

T
E

R
  
S

C
IE

N
C

E
 

 

Mathew en al. [7] provided a new dimension to CDN proposed an energy aware load balancing algorithm which is 

an optimal offline and online algorithm and can be used to extract energy savings both at the level of local load 

balancing at the data center and global load balancing across data centers. 

Mahajan en al.[19] proposed and affinity based round robin load balancing algorithm for cloud to balance the 

requests in cloud infrastructure . This algorithm takes into consideration the load over the data center and then if the 

datacenter is over loaded initiates load balancing in round robin fashion. Kansal en al.[25]  have discussed an survey 

on various existing load balancing algorithm in distributed environment. They have identified various parameters 

used to de   

However all the existing techniques considers the system non faulty and do not take into consideration the reliability 

due to request failure and failure in system. So to overcome all these issues a fault and reliability aware distributed 

load balancing is proposed to overcome the request failures due to faults. 

 

RELATED BACKGROUND 
 
In this section we have proposed a fault model for CDN. Fluid models are being proposed for TCP flow control and 
in many MANET routing protocols [12-14]. CDN proposed framework consists of servers with independent queues 
of self-determining queue length and service rate. Our proposal uses a fluid model for dynamic queue and real time 
behavior of the system. We have assumed a CDN with ‘n’ number of servers with service queue and high rate of 
request traffic over the system, which cannot be fulfilled by single system and the system remains in critical 
situation. In such situation load balancing plays an important role to resolve the critical condition of servers by 
diverting the request to the server with lower request rate and empty queue which can full fill the requests. For a 
server with a fluid flow model we need to introduce few notations.  

  
 

 
Fig: 3. Fluid model 

…………………………………………………………………………………………………………….. 

 

 Qi(t) : Queue length of server ‘i’ at time t.                 

   αi (t) :Request arrival rate of server ‘i’  
  µi (t) : Service rate of the server ‘i’ 
 
 
   In the fluid model can defined by  
 

                                                 (4) 

   For i=1 2….N 

Where  Q’ (t) are the extra requests  to be fulfilled .In a fluid model with an increase in request arrival rate αi (t) 
over a node or server queue size increases if service rate is less than the request arrival rate and server cannot 
handle the requests. As a result of which requests in the queue have to wait for a long time. Also with increase in 
queue length, load over the servers increases resulting in an increase in response time and computation time. On 
the other hand, all this result in higher probability of request failure. To provide best QoS (Quality of service) we 
need to maintain the relation between the average incoming rate and average service rate.  

 

                                                                                                                                       (5)                                        

Average incoming rate =   

Average service rate =  

                                         



SPECIAL ISSUE  

_______________________________________________________________________________________________________________________   

      

  
| Kumar et al. 2016 | IIOABJ | Vol. 7 | 2 | 9–24     13 

                           w
w

w
.iio

a
b

.o
rg

                                                                                        
 

   
                                            w

w
w

.iio
a
b

.w
e
b

s
.c

o
m

 
C

O
M

P
U

T
E

R
  
S

C
IE

N
C

E
 

Next parameter we need to find is the Probability of failure of request in server over a time t. We have assumed that request rate αi (t) is 

distributed randomly over the time which follows a Poisson distribution. 

 

                                                                                     (6) 

 

Where e is the natural logarithm and k is the possible number of occurrences of the event (positive integer values). 
X (The number of events in a given interval), λ (mean number of events per interval) is a positive number 
representing the expected number of occurrences within a specified interval. For example, if 6 requests arrive 
every 10 minutes, then for 1 hour λ will be 36. The Poisson distribution models the occurrence of an event without 
knowing the total number of possible occurrences. We have used the Poisson distribution for calculating fault 
rates and reliability of a system. So probability distribution for failure in a system can be given by 

                                       (7) 

Equation 7 shows the failure probability distribution over a time t, x (number of failures), ʎ (failure rate) .Where F 

(T) is defined as the probability of failure over the time t. To define failure in a system over a time t and t+ ∆ T is 

given as: 

 

                          (8) 

 
 

 
 
The Reliability of a system can be defined in term of many parameters such as durability, failure and QoS over a 

time t .In general probability, reliability can be defined as the probability of an item to perform a required function 

under stated conditions for a specified period of time. In terms of failure reliability of a system can be defined as 

resistance to failure of an item over time. The Probability that a system is reliable over a time t can be given as: 

 

                                                                                                                                  
(9) 

 

      For interval [0, t] 

          

And for time interval [t, t+ ∆ T] reliability R  (t) is given as 

 

    R(t)               (10) 

 

PROPOSED ALGORITHM 

 
Proposed load balancing is an improved algorithm over existing algorithm discoursed in section 2. Proposed 
algorithm takes into fault over a server over a period of time t as discoursed in section 3. Therefore the factors 
on which our algorithm is based on are Network Load, Fault Rate, Queue length, and Response Time. These 
parameters can be defined as: 
 
System Load: The percentage of serve request queue filled. 
Fault rate: Number of faults over a period of time. 
Queue Size: Maximum size of request queue length a server can maintain and fulfill. 
Response time: Time taken to start fulfilling a request. 
Network load: Total bandwidth of server out of total under utilization. 
 



SPECIAL ISSUE  

_______________________________________________________________________________________________________________________  

       

  
| Kumar et al. 2016 | IIOABJ | Vol. 7 | 2 | 9–24     14 

                           w
w

w
.iio

a
b

.o
rg

                                                                                        
 

   
                                            w

w
w

.iio
a
b

.w
e
b

s
.c

o
m

 
C

O
M

P
U

T
E

R
  
S

C
IE

N
C

E
 

Since each server is assumed to have its service rate, request rate, response time, queue size and failure rate 
which changes dynamically with time. For load balancing we need to find overloaded server or as we say the 
hot spots. A Server is said to be overloaded if: 
 
QSize (i): queue size of server i; 
Qi( t)       : queue length of server i at time ‘t’ from equation  4   
△Qi    : Extra Queue to be balanced  
                                  
Queue Size (i) < Qi(t)            (11) 
 
The Proposed algorithm is divided into three phases: 
a) Initialization 
b) Load balancing 
c) Updating 
 
 

a. Initialization 
 
In this phase fitness value for a server is initialized with default values of all the parameters discoursed. All the 
parameters are checked and updated periodically. Initially fault rate and network load are zero, where as Queue 
size and response time are based on the server properties. Based on these values, fitness values are calculated.  
When a new server is introduced in CDN it is initialized with default values and fitness value is calculated and 
updated with equal intervals of time. Initial parameters are defined as: 
 
Fault_Ini   : Initial fault rate. 
QSize (i)    : Initial Queue length based on server.  
Resp_Ini   : Initial response time based on server.  
N_load_Ini : Initial network load. 
S_load_Ini :Initial system load.     

 
a. Load balancing 

 
In this phase when the original server queue is full and no more requests can be queued, in order to save request 
from waiting in queue of original server and fail due to deadline because they cannot be processed. So to 
overcome this replica of the data being requested is made on another server to balance the request load over the 
original server. To balance load we require finding a server which can fulfill the request with highest fitness 
value and same quality of service as promised by original server. Here we can classify the servers into two 
categories as a hot spot and a cold spot. 
 
Hot spots are those servers which are overloaded with requests and have most of the MIPS and network 
bandwidth utilized and long request waiting queue. Cold spots are those servers which have low request rate 
and can accommodate more requests .In other words servers with low MIPS and network bandwidth under 
utilization i.e. load network and processing load. Load balancing is required to stop server becoming hotspot 
and find a cold spot to balance the request load. Whenever a server is found over loaded based on equation 11 
we need  to find the server which can fulfill extra request defined as :    
 

           △Qi   =  Qi( t) - QSize (i)                (12) 
 

 △Qi is the extra queue size to be balanced on server i where i  . If △Qi   is positive we will call load 

balancing function. To balance the load we need to find a server with empty queue length and highest fitness value 

from a list of all such servers maintained. This list used by load balancing algorithm along with other parameters to 

find the best server over which request can be diverted.   

 

Whenever load balancing is called we need to find a best fit server based on following parameters. 
 
1) Fault rate:  It is directly propositional to the load on the server that can be network load which leads to 

network failure and system load which leads to system failure which is due to high request rate, increasing 
the queue length. If the size of the queue is too large beyond the  processing rate, the requests waiting time 
increases which lead to request failure. On other hand system load also increases the probability of system 



SPECIAL ISSUE  

_______________________________________________________________________________________________________________________  

       

  
| Kumar et al. 2016 | IIOABJ | Vol. 7 | 2 | 9–24     15 

                           w
w

w
.iio

a
b

.o
rg

                                                                                        
 

   
                                            w

w
w

.iio
a
b

.w
e
b

s
.c

o
m

 
C

O
M

P
U

T
E

R
  
S

C
IE

N
C

E
 

failure in the  form of hard disk and machine failure. All the above discoursed reason leads to degradation 
in QoS (quality of service) provided by the server. 

 

                                (13) 

ʎ(t) : fault over a time t. 

 

Above equation defines that fault rate at a particular instance of time is functionally and directly 

proportional to system load and network load. 

 

ʎ: fault rate 

 

ʎ = ∑total number of fault / per hour;             (14) 

 

2) Response time: This can be defined as the time taken to start processing a request, i.e. the difference 

between the time request was submitted and the time server started processing the request. It is directly 

propositional to system load. As the CPU utilization of server increases response time increases. So the 

server which needs to be selected should have least average response time and can complete the request in 

least time.  

Resp : Response time 

 

3) Queue length: Every server has a fixed request queue length, which can be fulfilled without request failure. 

So we need to select a server for load balancing which have a sufficient largest free queue size to 

accommodate new requests without failure. 

 

To balance the load we need to take all the above parameters into consideration and calculate a fitness 

value for each server over which load can be balanced to provide better QoS and increase the reliability 

of the overall system by balancing the load and reducing failures. 

 

The Fitness value for a server can be determined as: 

Fval (s): Fitness value of server s 

                (15) 

 

 
 

 

 
 

server_id=   max(fval1,fval2….,fvaln);                 (16) 

Load balancing is divided into 3 steps 1) Find the list of all the servers which have empty queue grater then △Qi 
is created. 2) From the created list find a server for load balancing with highest fitness value but at the same 
time the new server should have less or equal fault rate than the searching server to provide same or higher 
quality of service as promised by the original server, i.e. least fault rate, lease network load, least system load, 
and largest free queue length. 3) Transfer the set of extra requests to the selected server. This approach helps in 
maintaining skewness and increase reliability and decrease fault rate. 
 
 
 

b. Fitness updating 
 
This phase includes updating the value of current network load, system load, fault rate, queue length of server. 
This phase is repeated after an equal interval of time to get the updated current status of the servers. Initially, all 
the parameters are initialized with default values in which fault rate ʎ (t) is initially zero, network load in also 



SPECIAL ISSUE  

_______________________________________________________________________________________________________________________  

       

  
| Kumar et al. 2016 | IIOABJ | Vol. 7 | 2 | 9–24     16 

                           w
w

w
.iio

a
b

.o
rg

                                                                                        
 

   
                                            w

w
w

.iio
a
b

.w
e
b

s
.c

o
m

 
C

O
M

P
U

T
E

R
  
S

C
IE

N
C

E
 

zero and system load is also taken as zero. The Queue length of a server in always initially zero because there is 
no request made to that server. 
 
ʎ (t)_Initial = 0       \\ Initial fault rate 
 
N_load_ini = 0   \\Initial network load. 
 
S_load_ini = 0     \\Initial system load. 
 
Q_len_ini = 0      \\Initial queue length 
 
Res_Ini = Not zero       \\Initial server response time 
 
For calculating new fitness value we need to find changes in the parameters. Let Si be the server, ʎ (t)_new, 
N_load_new, S_load_new, Q_len_new , Res_new  are new fault rate over a time ‘t’ ,new network load, system 
load, queue length and response time correspondingly. Let new fitness value be fvalt_new (Si) of server i. 
 

     
 

 (17) 
 

                       server_id = min (fval1new, fval2new…., fvalnnew)                             (18) 
        

       
 

       

      
Whenever a fitness value is upgraded next request is always diverted to server with largest fitness value based 

on updated fitness values give in equation 17.  

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Load balancing Algorithm 

 

1: Initialize servers  

2: Start sending requests 

3: push request in queue. 

4: if (queue length > server queue length) 

5:  s = find_server()         // find server with empty queue and highest fitness value 

6:  if (( s !=  searching server ) & (fault rate < searching server)) 

7:    Migrate request  =>“s”     

8: else 

9:  keep searching free server. 

10: else 

11: pop request from queue process it 
 



SPECIAL ISSUE  

_______________________________________________________________________________________________________________________  

       

  
| Kumar et al. 2016 | IIOABJ | Vol. 7 | 2 | 9–24     17 

                           w
w

w
.iio

a
b

.o
rg

                                                                                        
 

   
                                            w

w
w

.iio
a
b

.w
e
b

s
.c

o
m

 
C

O
M

P
U

T
E

R
  
S

C
IE

N
C

E
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
In this section we have described the performance of proposed fault aware load balancing algorithm with round 
robin (RR), random (Rand), least loaded (LL),  two random choice (2RC) and queue length based load balancing 
(QLBLB) algorithms. In this for simulation GridSim API [10] is used. GridSim API basically supports scheduling 
and load balancing in parallel and distributed environment. Load balancing, fault in server and server request 
queue feature of GridSim are used to simulate CDN. 
 
Initially GridSim do not support failure in servers. In this implementation we have introduced fault aware 
scheduling in GridSim to study the performance of CDN in the fault aware environment. In simulation to create a 
network architecture as one shown in figure 1 we have used Brite file. Brite file helps to define network properties 
and the interconnection between the nodes which are the servers in our case. To compare performance based on 
the number of faults occurring by using each of the previous algorithms and proposed algorithm. We have 
considered 3 servers S1, S2, S3 each of them having their independent failure rate ʎ (t), request arrival rate, 
processing rate and queue length. Table 1 shows the specification of each server. 
 

Table: 1. Servers Parameters 
 

Server 
Name 

Queue 
length 

Fault  
rate 

Service  
rate 

Server1 20 0.143 7 

Server2 50 0.125 8 

Server3 50 0.5 2 

 
Queue length defines that after the specific queue is full extra requests will be balanced using proposed algorithm, 
to save the request to fail due to large waiting time. Table− 2 and figure− 4 shows the number of requests failed 
when the algorithms are tested for 60,100, 200,500,600 and 700 requests count with all algorithms. Workload 
traces are achieved from load traces of DAS-2multi-cluster system obtained from the Parallel Workload Archive 
are used to generate requests [24]. 

 
Table: 2.Request Failure Count 

 

Algorithm Request count 

60 100 200 500 600 700 

Proposed 8 15 28 85 102 121 

QLBLB 13 23 43 110 131 167 

RAND 12 25 36 91 109 132 

2RC 10 19 36 98 117 142 

LL 10 23 39 102 124 151 

RR 10 18 37 93 112 131 

 
 

Update fitness value algorithm 

 

1: Find updated values of parameters  

2: Find network load 

3: Find system load 

4: Find fitness value using equation 14 

5: update the new fitness value  

 



SPECIAL ISSUE  

_______________________________________________________________________________________________________________________  

       

  
| Kumar et al. 2016 | IIOABJ | Vol. 7 | 2 | 9–24     18 

                           w
w

w
.iio

a
b

.o
rg

                                                                                        
 

   
                                            w

w
w

.iio
a
b

.w
e
b

s
.c

o
m

 
C

O
M

P
U

T
E

R
  
S

C
IE

N
C

E
 

 

Fig: 4. Failure count of proposed algorithm against other algorithms 

…………………………………………………………………………………………………………….. 

 

To compare performance based on probability of failure occurring by using each of the previous algorithms and 

proposed algorithm using scenario given in Table− 1. 

Table: 3. Failure probability 
 

 
Algorithm 

Request count 

60 100 200 300 400 500 600 700 

Proposed 0.133 0.15 0.14 0.16 0.17 0.17 0.17 0.172857 

QLBLB 0.216 0.23 0.23 0.233 0.224 0.22 0.218333 0.238571 

RAND 0.75 0.25 0.18 0.18 0.182 0.18 0.181667 0.188571 

2RC 0.166 0.19 0.18 0.199 0.197 0.2 0.195 0.202857 

LL 0.166 0.23 0.195 0.2 0.2 0.204 0.206667 0.215714 

RR 0.166 0.18 0.185 0.1866 0.185 0.186 0.186667 0.187143 

 

Table− 3 and figure−5 show the probability of request failure when each of the algorithm is tested over 

60,100,200,300,400,500,600 and 700 requests. Table− 3 shows that with increase in request failure probability 

increases for QLBLB, 2RC and LL.  On the other hand the probability of failure is stable for RR and Rand but 

grater then proposed algorithm. This shows that the proposed algorithm proves to have a lower failure count and 

failure probability as compared to other algorithms. 

Table: 4. Reliability 
 

Algorithm Request count 

60 100 200 500 600 700 

Proposed 0.867 0.85 0.86 0.83 0.83 0.827 

QLBLB 0.784 0.77 0.77 0.78 0.781 0.761 

RAND 0.25 0.75 0.82 0.82 0.818 0.811 

2RC 0.834 0.81 0.82 0.8 0.805 0.797 

LL 0.834 0.77 0.805 0.796 0.793 0.784 

RR 0.834 0.82 0.815 0.814 0.813 0.81 

 



SPECIAL ISSUE  

_______________________________________________________________________________________________________________________  

       

  
| Kumar et al. 2016 | IIOABJ | Vol. 7 | 2 | 9–24     19 

                           w
w

w
.iio

a
b

.o
rg

                                                                                        
 

   
                                            w

w
w

.iio
a
b

.w
e
b

s
.c

o
m

 
C

O
M

P
U

T
E

R
  
S

C
IE

N
C

E
 

 

Fig: 5. Failure probability of proposed algorithm against other algorithms 

…………………………………………………………………………………………………………….. 

The Proposed algorithm can also be compared with other algorithm based on one more parameter, i.e. reliability 

which is defined in equation 9. Reliability defines the algorithm to be more dependent and probability that the 

request will be completed. So, higher the reliability lowers the chance of request failure. 

 

 
 

Fig: 6. Reliability of proposed algorithm against other algorithms 

…………………………………………………………………………………………………………….. 

 

Table: 5.Completed request count 
 



SPECIAL ISSUE  

_______________________________________________________________________________________________________________________  

       

  
| Kumar et al. 2016 | IIOABJ | Vol. 7 | 2 | 9–24     20 

                           w
w

w
.iio

a
b

.o
rg

                                                                                        
 

   
                                            w

w
w

.iio
a
b

.w
e
b

s
.c

o
m

 
C

O
M

P
U

T
E

R
  
S

C
IE

N
C

E
 

Algorithms Request count 

60 100 200 300 400 500 600 700 

Proposed 52 85 172 252 332 415 498 579 

QLBLB 47 77 157 229 311 390 469 533 

RAND 48 75 164 246 327 409 491 568 

2RC 50 81 164 242 321 402 483 558 

LL 50 77 161 240 320 398 476 549 

RR 50 82 163 244 326 407 488 569 

 

 

Fig: 7. Completed request count of proposed algorithm against other algorithms 

…………………………………………………………………………………………………………….. 

Table− 4 and Figure− 6 shows the increase in reliability using proposed algorithm and improvement over other 

algorithm. Other advantages of the proposed algorithm over other algorithms that can be derived from Table− 3 

and Table−4 is that the algorithm which has higher reliability has shown to have high request failure, on the other 

hand proposed algorithm have a lower request failure and higher reliability. 

Table− 5 and Figure− 7 shows the improvement in Count of completed request using proposed algorithm over 

other proposed algorithm I faulty environment.     

 

                                                   (20) 

     N= number of servers. 

    Max_length_i =Maximum queue length of server i 

Proposed can also be compared based on the maximum queue length, because higher the queue size more the 
request waiting time. This increases the probability of request to fail over the period of time. So by comparing 
the maximum queue length achieved by each algorithm we can find the best algorithm.  

 



SPECIAL ISSUE  

_______________________________________________________________________________________________________________________  

       

  
| Kumar et al. 2016 | IIOABJ | Vol. 7 | 2 | 9–24     21 

                           w
w

w
.iio

a
b

.o
rg

                                                                                        
 

   
                                            w

w
w

.iio
a
b

.w
e
b

s
.c

o
m

 
C

O
M

P
U

T
E

R
  
S

C
IE

N
C

E
 

   

(a) 2RC     (b) QLBLB 

Fig: 8. Queue length of 2RC and QLBLB algorithm 

…………………………………………………………………………………………………………….. 

   

(a) Fault     (b) LL 

Fig: 9. Queue length of Proposed Fault and LL algorithm 

…………………………………………………………………………………………………………….. 

   

(a) RAND     (b) RR 

Fig: 10. Queue length of RABD and RR algorithm 

…………………………………………………………………………………………………………….. 

Table: 6.Average Queue Length 
 

Algorithms RR LL RAND 2RC QLBLB FAULT 

Average Queue length 96 101 101 150 129 87 

Failure count 97 95 96 94 97 93 

 
Figure− 8, 9 and 10 shows the behavior for queue length due to proposed and all other algorithms. An 
observation that comes out from above figures is that the algorithm which lower average queue length but has a 
higher fault rate.  Figure− 8 (a) of 2RC algorithm has 150 average queue length and so on for other algorithm as 
shown in table 5 correspondingly.  Table− 6 clearly shows that an algorithm which has a lower average queue 
length, but has a higher failure count like RR algorithm, but proposed algorithm prove to have better performance 
in term of average queue length and failure count at the same time compare to other algorithm. Output for table− 



SPECIAL ISSUE  

_______________________________________________________________________________________________________________________  

       

  
| Kumar et al. 2016 | IIOABJ | Vol. 7 | 2 | 9–24     22 

                           w
w

w
.iio

a
b

.o
rg

                                                                                        
 

   
                                            w

w
w

.iio
a
b

.w
e
b

s
.c

o
m

 
C

O
M

P
U

T
E

R
  
S

C
IE

N
C

E
 

6 is tested in the scenario shown in table−1 with 3 servers and corresponding failure rate, service rate and queue 
length. The   service rate for server 1is 7 requests can be processed at the same time, similarly 6 requests for 
server 2 and server 3. 

 
Table: 7. Throughput 

 

Algorithms Request count 

60 100 200 300 400 500 600 700 

Proposed 86.66667 85 86 84 83 83 83 82.71429 

QLBLB 78.33333 77 78.5 76.333333 77.75 78 78.16667 76.14286 

RAND 80 75 82 82 81.75 81.8 81.83333 81.14286 

2RC 83.33333 81 82 80.666667 80.25 80.4 80.5 79.71429 

LL 83.33333 77 80.5 80 80 79.6 79.33333 78.42857 

RR 83.33333 82 81.5 81.333333 81.5 81.4 81.33333 81.28571 

 

 

Fig: 11. Throughput Comparison of proposed algorithm against other algorithms 

…………………………………………………………………………………………………………….. 

Table− 7 compares the throughput of proposed algorithm and other proposed algorithms for 60, 100, 200, 300, 

500, 700 request over the servers. Figure− 11 compares the throughput of proposed algorithm graphically and 

shows the improvement of proposed algorithm over other algorithms. 

Taking into consideration all the performance parameters we can suggest that fault and reliability based proposed 

algorithm prove to have better performance and QoS over other algorithms. 

 

CONCLUSION 
 

In this paper, different types of Load balancing algorithm have been discussed with their drawbacks in CDN. To 

overcome the drawbacks, an efficient fault aware load balancing algorithm is proposed which performs better than 

other existing load balancing algorithms proposed for CDN in the fault aware environment. For future work, this 

algorithm may be compared with other proposals and study may be done for further improvements in the QoS.   

 

 

  

 



SPECIAL ISSUE  

_______________________________________________________________________________________________________________________  

       

  
| Kumar et al. 2016 | IIOABJ | Vol. 7 | 2 | 9–24     23 

                           w
w

w
.iio

a
b

.o
rg

                                                                                        
 

   
                                            w

w
w

.iio
a
b

.w
e
b

s
.c

o
m

 
C

O
M

P
U

T
E

R
  
S

C
IE

N
C

E
 

CONFLICT OF INTEREST 
Authors declare no conflict of interest.  
 

ACKNOWLEDGEMENT  
None 

FINANCIAL DISCLOSURE  
No financial support was received to carry out this project. 

 
REFERENCES 
 

[1] Akyildiz Papagianni, Chrysa, Aris Leivadeas, and Symeon 

Papavassiliou.[2013] A cloud-oriented content delivery network 

paradigm: modeling and assessment. Dependable and Secure 

Computing, IEEE Transactions 10( 5): 287−300. 

[2] Leong, Derek, Tracey Ho, and Rebecca Cathey.[ 2009] Optimal 

content delivery with network coding." In Information Sciences 

and Systems, CISS 2009. 43rd Annual Conference on 2009, 

IEEE, 414−419. 

[3] Maki, Naoya, Ryoichi Shinkuma, Tatsuya Mori, Noriaki 

Kamiyama, and Ryoichi Kawahara. [2013] A periodic 

combined-content distribution mechanism in peer-assisted 

content delivery networks. In ITU Kaleidoscope: Building 

Sustainable Communities (K-2013), IEEE 2013 Proceedings of, 

1−8. 

[4] Jiang, Xueying, Shiyao Li, and Yang Yang.[2013] Research of 

load balance algorithm based on resource status for streaming 

media transmission network. In Consumer Electronics, 

Communications and Networks (CECNet), 2013 3rd 

International Conference on, IEEE, 503−507.  

[5] Ling Li, Ma Xiaozhen, and Huang Yulan.[2013] CDN cloud: A 

novel scheme for combining CDN and cloud computing. In 

Measurement, Information and Control (ICMIC), 2013 

International Conference on, IEEE, 1:.687−690.  

[6] Kim TaeYeon, and HoYoung Song.[2012] Hierarchical Load 

Balancing for Distributed Content Delivery Network. In 

Advanced Communication Technology (ICACT), 2012 14th 

International Conference on, IEEE.810−813.  

[7] Mathew Vimal, Ramesh K Sitaraman, Prashant Shenoy.[2012] 

Energy-aware load balancing in content delivery networks. In 

INFOCOM, 2012 Proceedings IEEE, 954−962. 

[8] Maki Naoya, Takayuki Nishio, Ryoichi Shinkuma, et al.[2013] 

Expected traffic reduction by content-oriented incentive in peer-

assisted content delivery networks. In Information Networking 

(ICOIN), 2013 International Conference on, IEEE, 450−455.  

[9] Manfredi Sabato, Francesco Oliviero, and S Pietro 

Romano.[2012] Optimised balancing algorithm for content 

delivery networks. IET communications 6(7):733−739. 

[10] Buyya Rajkumar, and Manzur Murshed. [2002] Gridsim: A 

toolkit for the modeling and simulation of distributed resource 

management and scheduling for grid computing. Concurrency 

and computation: practice and experience 

14(13−15):1175−1220. 

[11] Manfredi Sabato, Francesco Oliviero, and Simon Pietro 

Romano. [2013]A distributed control law for load balancing in 

content delivery networks. IEEE/ACM Transactions on 

Networking (TON) 21(1): 55−68. 

[12] Misra Vishal, Wei-Bo Gong, and Don Towsley.[ 2000] Fluid-

based analysis of a network of AQM routers supporting TCP 

flows with an application to RED. In ACM SIGCOMM 

Computer Communication Review, 30(4):151−160.  

[13] Hollot Christopher V, Vishal Misra, Donald Towsley, and 

Weibo Gong.[2002]Analysis and design of controllers for AQM 

routers supporting TCP flows. Automatic Control, IEEE 

Transaction 47(6): 945−959. 

[14] ]V.Misra, W Gong, W boGong, and DTowsley,[2000 ] Fluid-

based anal-ysis of a network of AQ Mrouter ssupporting TCP  

flows with an applicationtored, Proc.ACM SIG COMM,:151–

160. 

[15] Mitzenmacher, Michael.[2001] The power of two choices in 

randomized load balancing. Parallel and Distributed Systems, 

IEEE Transactions 12(10): 1094−1104.  

[16] Cardellini Valeria, Emiliano Casalicchio, Michele Colajanni, 

and Philip S Yu. [2002]The state of the art in locally distributed 

Web-server systems. ACM Computing Surveys (CSUR) 34(2): 

263−311.  

[17] Dahlin, Michael.[2000] Interpreting stale load information. 

Parallel and Distributed Systems, IEEE Transactions 

,11(10):1033−1047.  

[18] Carter Robert L, Mark E Crovella.[1997] Server selection using 

dynamic path characterization in wide-area networks. In 

INFOCOM'97. Sixteenth Annual Joint Conference of the IEEE 

Computer and Communications Societies. Driving the 

Information Revolution., Proceedings IEEE, 3: 1014−1021.  

[19] Mahajan Komal, Ansuyia Makroo, and Deepak Dahiya. [2013] 

Round Robin with server affinity: a VM load balancing 

algorithm for cloud based infrastructure. Journal of information 

processing system,s 9(3): 379−394. 

[20] Javadi, Bahman, Jemal Abawajy, and Rajkumar Buyya.[2012] 

Failure-aware resource provisioning for hybrid Cloud 

infrastructure.Journal of parallel and distributed computing, 

72(10): 1318−1331. 

[21] Fu, Song, and Cheng-Zhong Xu. [2010] Quantifying event 

correlations for proactive failure management in networked 

computing systems. Journal of parallel and distributed 

computing, 70(11):1100−1109. 

[22] Gallet Matthieu, Nezih Yigitbasi, Bahman Javadi, Derrick 

Kondo, Alexandru Iosup, and Dick Epema.[2010] A model for 

space-correlated failures in large-scale distributed systems. In 

Euro-Par 2010-Parallel Processing, 88−100. Springer Berlin 

Heidelberg 

[23] Yigitbasi Nezih, Matthieu Gallet, Derrick Kondo, Alexandru 

Iosup, Dick Epema.[2010] Analysis and modeling of time-

correlated failures in large-scale distributed systems. In Grid 

Computing (GRID), 2010 11th IEEE/ACM International 

Conference, 65−72.  

[24] ParallelWorkloadArchive. 

http://www.cs.huji.ac.il/labs/parallel/workload/. 

[25] Kansal, Nidhi Jain, and Inderveer Chana.[2012] Existing load 

balancing techniques in cloud computing: a systematic 

review. Journal of Information Systems and 

Communication ,3(1): 87−91. 

 

http://www.cs.huji.ac.il/labs/parallel/workload/


SPECIAL ISSUE  

_______________________________________________________________________________________________________________________  

       

  
| Kumar et al. 2016 | IIOABJ | Vol. 7 | 2 | 9–24     24 

                           w
w

w
.iio

a
b

.o
rg

                                                                                        
 

   
                                            w

w
w

.iio
a
b

.w
e
b

s
.c

o
m

 
C

O
M

P
U

T
E

R
  
S

C
IE

N
C

E
 

 
 

 
ABOUT AUTHORS 
 

 

 
 

 

 

 
 

 

 

 
 

 

 

 

 

 

 

 

 Prakash Kumar has received his B. Tech. in Electronics and Communication Engineering, and 

M. Tech in Computer Science and Technology from University of Roorkee (Now Indian Institute of 

Technology, Roorkee), India.  He is currently an Assistant Professor (Senior Grade) in Jaypee 

Institute of Information Technology,(Deemed University), Noida, India. His area of interest is in 

Computer Networks and Communications, Distributed Computing, Cloud Computing and 

Virtualization. He is currently pursuing his Ph D in the field of virtualization of resources viz. 

Systems and network resources. His main focus is on Trust, Reliability and Fault Tolerant 

networks and systems for distributed and cloud environments. 

 
Prof. Krishna Gopal is currently Dean Academic and Research at JIIT, Noida, India since 2011. 

He is Ph. D. from REC KurukshetraKurukshetra University Kurukshetra, India. He is having 45 

years of teaching and R&D experience. He received his Bachelor, Master and PhD in Electronics 

engineering from IIT, Madras, RECKurukshetra in 1966, 1972, 1979 respectively. He published 

more than 100 papers in different journals, conferences, patents etc. He is member of various 

professional bodies like: Life Member System Society of India, Indian Society for Technical 

Education, senior member of IEEE etc. His area of interest is Reliability and Fault Tolerant 

Networks and communication Systems.   

 
Prof. J P Gupta has received his Ph D degree from University of Westminster, UK. He is 

currently the Director Emeritus (QA) at Hydrocarbons Education and Research Society, New 

Delhi, India. He is an academician having more than 35 years experience including Professor at 

IIT Roorkee, India, Vice Chancellor at JIIT Noida,India,  Galgotia University, and Sharda 

University, India. He is author of more than 70 research papers published in International journals 

and conferences. He has received Commonwealth Fellowship and many more awards and 

memberships to his credit.  

 


