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ABSTRACT 
 
In the past decade, commercial and scientific organization generates a large volume of data. Clustering of Big data finds application in many 

areas. For example, in pattern recognition, information extraction, image processing, computational statistics, and data mining. Over the 

years, we find many methods in the literature for clustering large data set and most of these methods uses, a distance based similarity 

measures to assign data points to a cluster. This paper considers the case of finding the cluster in big data that cannot fit into the physical 

processor memory or the data is accessible in batches. In the present work, we have modified the distance-based similarity measure to 

discover the similarity between an unlabeled data point and a cluster for assignments of cluster label to unlabeled data points. The data 

points first sampled according to available physical memory and then passed to the next step for further processing. We have used the k-

means algorithm and its variants to assign the class or label to the first sample into a legitimate cluster. Also, we have compared the results 

with sequential k-means, batched-mode k-means, and online k-means algorithm for the clustering of the big data set. Our experimental 

results based on running time and the quality of the clusters shows the viability of proposed work.  

 

INTRODUCTION  
  
In recent years, we have seen that commercial and scientific organization generates a large volume of 

data. Clustering of such data finds application in many areas. However, clustering of large data set requires 

a different approach than traditional clustering algorithm because this data set may not fit into the 

processor’s physical memory. Another situation that may challenge the clustering algorithm is the use of 

different data access model when the data is available in a stream, increments, or in batches [1]. 

 

The primary need of the clustering algorithm to handle above situation is to reuse the clustering results on 

the addition of new data to the existing dataset in the form of batches or according to the data access 

model. Liberty et al. show three type of data access model for the handling of a large dataset, the offline 

mode, stream mode and online mode [1]. 

 

In the offline access mode, the data points are accessible ahead of time, and the data access model is 

unrestricted. Therefore, finding the optimal solution is hard. Recently, with an end goal to make adaptive 

sampling methods more scalable, Bahmani et al. presented k-means|| algorithm that decreases the 

number of passes required for the data, and empowers enhanced parallelization [2]. 

 

In the streaming model, the data is processed in one pass and keep a small amount of information about 

the data. In any case, it must yield cluster centers when the stream ends. This limited data access model 

requires new algorithmic thoughts for clustering. In this model, the new data points get their cluster with 

the help of previously computed centers [3, 4]. 

 

An online k-means algorithm must allocate points to cluster throughout the run of the algorithm. In this 

model, data points arrived one by one in an arbitrary order. At the point when new point arrives, the 

algorithm should either include it in one of the current clusters or create another cluster. This setting is 

entirely harder than the streaming model. From another viewpoint, the online algorithm can be convertible 

to a streaming model. Also, one has to keep enough statistics for every cluster so that it can be used 

toward the end of the stream [1]. 

 

Due to simplicity and ease of implementation, the k-means algorithm and its variants are used to cluster 

large dataset in the numerical domain [5]. In this method, every cluster is drawn by a center that is 

computed by the mean value of the entire data points present in the cluster [6]. The algorithm uses a 

straightforward distance measure to give a suitable cluster label to each non-clustered data points. 

 

We see that the Euclidean distance measure from the mean value of other data points in the cluster is not 

adequate for a non-uniformly distributed cluster. Therefore, there is a need to address similarity measures 

based on the distribution of data objects in a cluster. In this paper, we have analyzed the use of a new 

similarity measure in light of the spread (largest and least value of every cluster) of data in every cluster 

and its mean value (centroids). The algorithm, named as Incremental Batched Clustering Algorithm (IBCA), 

gives a suitable cluster level to each non-clustered data point that is coming as batches or stream mode.  

 

In this work, we have divided the task of assignments of cluster label to a non-clustered data point in three 

stages: batch creation, cluster analyses, and data labeling phase. In batch formation stage, we have 

sampled an appropriate size of data according to the main memory of the system. In cluster analysis 

stage, a suitable clustering algorithm, for example, k-means, k-means++, k-medoids and fuzzy c-mean, is 

applied on the dataset to get the initial cluster representative. In data labeling stage, based on the new 
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similarity coefficient, each unlabeled data point gets an appropriate cluster label corresponding to the 

maximal resemblance. The experiments on the benchmark datasets show the effectiveness of the 

proposed framework. We have also analyzed the effect of the initial seed selection of the k-means 

algorithm on a large dataset. 

 

The rest of paper is organized as follows. In Section 2, the related works are reviewed. In Section 3, the 

problem statement and several variants of k-means are presented. Section 4 describes our proposed 

method and Section 5 illustrates experimental setup and results. In Section 6, we conclude the paper. 

 

REALATED WORKS  
 

Several methodologies have been documented in the literature for the study of the structure of large data 

sets [7]. Many applications need clustering of datasets that is too large to fit into the usable physical 

memory, or the clustering data is available in batches. Both the circumstances influence the need for 

incremental clustering algorithm [8].  

 

The investigation of incremental clustering has begun with Hartigan's clustering algorithm that makes 

utilization of a threshold value to decide if a data objects can be put in a current cluster or it should form 

another cluster independently [9]. Several other algorithms use a sample data having a size equivalent to 

accessible physical memory [10].  

 

The BIRCH clustering algorithm is well known for the clustering of streaming data. This algorithm has two 

stages: in the initial step, it examines the database and after that builds a tree comprising data of clusters. 

In the next step, BIRCH prunes the tree by eliminating of sparse nodes and producing new unique cluster. 

However, the technique has a drawback of limited memory of its leaves. In addition, the algorithm will not 

execute well if the cluster does not have spherical shapes because the BIRCH algorithm controls the 

cluster's boundary by applying the approximation of diameter [11]. 

 

The maximum margin clustering uses one data point at one time to decide which cluster the new data 

point has a place [12]. In another approach, a distance based incremental clustering technique that can 

discover clusters of arbitrary shapes and sizes in dynamic datasets have been introduced in [13]. 

Incremental clustering is also referred as a single pass clustering while the conventional algorithm is 

similar to multi-pass clustering. The thought is to cluster a manageable amount of data and preserve the 

results for the next block until all the data blocks are processed [8]. 

 

Shindler et al. consider the k-means issue where the data is too large to be stored in physical main 

memory and data must be acquired sequentially [14]. They introduce an improved algorithm for the k-

means in a streaming model. Ester et al. have modified DBSCAN algorithm that is appropriate for 

clustering where dataset are often updated [15]. 

 

Aaron et al. demonstrated a dynamic incremental k-means clustering algorithm to discuss seeding issue, 

the sensitivity of the algorithm to the order of the data, and the number of clusters for the k-means 

algorithm [16]. Om and Sangam introduced a hybrid data-labeling algorithm for clustering mixed datasets 

[17]. This algorithm utilizes distance comparability measures for the numerical data to give cluster level to 

unlabeled data points.  

 

Based on literature survey we observe that most of the method uses a distance based similarity measure 

for clustering large datasets. In the next section, we present the k-means and its variants that are used for 

handling large dataset. 

 
 
K-means and related  
 

The traditional k-means algorithm is simple optimization model in unsupervised learning process [6]. Given 

the set,  1 2,  ,  nD x x x  , of n data points in Rn, the objective is to minimize the cost of discovering k 

clusters,  1,  2,  ,  c kC c c , with k center, 1,  2,  ,  m m mk by using equation-1. 

    2

1
1

( ) min || ||

n k

i j
j

i

V C x m




                 (1) 

Where jm , is the mean of the cluster, ck . The norm || || can be any vector norm on Rn. Minimizing the 

squared error is an NP-hard problem [18]. The k-mean technique is an iterative process and often 

terminates near a local minimum, but it is very sensitive to the initial set of centers. Algorithm-1 shows the 

working of the k-means algorithm. 

 

Algorithm 1 :  k-means (R, k) 

Step 1. Select k first centers  1,  2,  ,  m m mk randomly from R 
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Step 2. Repeat 

Step 3. Partition R into k subsets,  1,  2,  ,  c c ck , such that Ri, 1 ≤ i ≤ k, contains all points whose 

nearest center is mi 

Step 4. Replace the current set of centers by a new set of centers  1,  2,  ,  m m mk , such that center 

mi, 1≤  i ≤ k, is the center of gravity of Ri 

Step 5. Until the set of centers has not changed 

 

Clustering method expects that the whole data set is available ahead of time. In a few cases, it is possible 

that the data is large and cannot match the memory of the processor, or the data is available in batches, 

so a substitute technique must be adapted. The k-means and various other iterative optimization 

algorithms related to the k-means algorithm uses one of two fundamental modes of data access model for 

dealing large data, batch mode, and on-line mode. In an online mode or sequential mode, the parameters 

of the cluster are recalculated at every addition of new data points of the training set. Similarly, in batch 

mode, the data is accumulated with time, and a while later the clustering is performed on each batch of 

data. The last centers of cluster i are utilized as the initial center for the next approaching batch i+1 [19].  

In the sequential k-means, the data points are assigned to a cluster and immediately update the cluster 

centers. Because of the substantial overhead of recalculating centers, the resource requirement of 

sequential k-means may be a restrictive element. Even so, in specific situations, the data may appear one 

at a time. In these cases, it may be desirable to update the results per data occurrence as opposed to 

waiting for the aggregation of the whole data set. 

 

In the next sub-section, we discuss various variants of k-means algorithm documented in the literature that 

is dealing with large data. Further to this, we also analyze the effect of initial seed selection methods on 

the quality of clustering results on the sequential k-means algorithm. 

 
The Sequential Block K-means Algorithm 
 

The sequential block mode is a trade-off between the stringent computational prerequisites of the 

sequential k-means and the need to work on data online. For this situation, the clustering happens on 

accumulated block of data. Every block is going through l epoch of k-means where the last centers of block 

l are utilized as the initial center for block l+1. In many cases l=1. In this sense, the algorithm uses another 

multistage clustering, for example, the pyramid k-means algorithm [19, 16]. The block sequential 

algorithm employed in an iterative manner where on each iteration performs l epochs of k-means on a 

single block of data elements at once.  

 
Single Pass k-means 
 

Single Pass k-means (SQKM) is an adaptation of the online fuzzy c-means algorithm discussed in [10]. 

Give N be the number of data objects in a dataset, which is too large to fit in main memory; let n signify the 

number of points that can be stacked into memory. SQKM divides the N points in the big dataset into s 

pieces of small data as ( )N
n

s  . Further, k-means algorithm is used to find k groups from these segments.  

The first set of data now replaced by the k-weighted means, ,{ :  1 i k}w im   , where the weights are the 

numbers of data objects in every group, :1{ }i iw X i k  .These k weighted centroids are then 

converged with the next data segment. Followed by applying weighted k-means (WKM) to this combined 

set with the centroids from the past k-means run. The procedure is repeated until the entire dataset is 

stacked and processed. In the wake of acquiring the last k centroids, the big data are labeled according to 

the similarity measures. The two most vital disclaimers about its effectiveness are:  

 At every step the SQKM faces same limitation and problem as the k-means algorithm and  

 The output is obviously subject to the way big data are divided in s sample. Each chunk or sample of 

SQKM is treated as one input, and thus SQKM is sequential.  

 
K-MEANS++ Clustering Algorithm 
 

The k-means algorithm is sensitive to the initial set of center. To improve the quality of k-means algorithm 

k-means++ algorithm [20] was introduced. It chooses the initial set of center with probability proportional 

to its squared distance from the nearest center already chosen. The k-means++ algorithm for choosing k 

initial center is given in Algorithm-2 

 

Algorithm 2:  k-means++ (R, k) 

Step 1. choose an initial center m1 uniformly at random from R 

Step 2. 1M m  

Step 3.  for i  = 2 to k 

Step 4. choose the next center mi at random from R, where the probability of each R r   is  given by 

D2(r, M)/cost(R, M) 

http://www.iioab.org/
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Step 5. iM M m    

Step 6.  repeat 

Step 7. Partition R into k subsets  1,  2,  ,  c c ck , such that Ri, 1 ≤ i ≤ k, contains all    points whose 

nearest center is mi 

Step 8. replace the current set of centers by a new set of centers  1,  2,  ,  m m mk , such that center 

mi, 1≤  i ≤ k, is the center of gravity of Ri 

Step 9.   until the set of centers has not changed 

 
Partitioning about medoids (PAM) 
 

Partitioning about medoids (PAM) cluster the data objects about k medoids. The algorithm takes the 

instance of the steepest ascent hill climber, using a direct swap neighborhood operation. Best objects are 

picked in each iteration that conveys the best clustering result. The objective function uses the sum of the 

distance from each object to the closest medoid. As the search time of the algorithm is slow, the initial set 

of medoids builds in a greedy fashion. Starting with an empty set of medoids, data objects are added one 

at a time until k medoids have been selected. At each step, the new medoid is chosen to minimize the 

objective function. 

 
PROPOSED WORK 
 
Most of the partitional clustering techniques method makes use of the Euclidean distance between the 

cluster centers and the data points to allocate a data point into the cluster. In this paper, we propose new 

similarity measures for the sequential k-means clustering. The algorithm is abbreviated as Incremental 

Batched Clustering Algorithm (IBCA) and is capable of handling large and streaming numerical data.  

 

The sequential k-means algorithm divides the N points in the big dataset into “s” pieces of small data. On 

the arrival of a new data point, the algorithm uses the previously computed centroids for the assignment of 

cluster label. The process is repeated until the entire dataset is stacked and processed. Often the 

similarity measures that are used in handling sequential data is based on the Euclidean distance between 

the cluster representative and the data objects. However, this strategy does not consider the spread of 

data inside the group for appointing the cluster level to unlabeled data points. Upon arrival of a data point, 

Xi the sequential k-means algorithm uses the similarity measures defined in equation-2 to provide cluster 

label to data point Xi [21]. 

                      2
( , )

1
1

min || ||
i j

n k

X C i j
j

i

D X C




                                    (2) 

Where ( , )i jX CD  is the distance of data object iX  with cluster center iC . 

Now consider the case where a data point arrives in unexpected order. In the sequential approach, the 

first block of data is divided into two clusters having centroids C1 and C2 with the help of traditional k-

means algorithm. Now on the arrival of a new data point Xi., following two possibilities is possible which 

are shown in the [Fig. 1] and [Fig. 2].   

 If the distances between Xi and cluster centers are equal, then the algorithm is not able to decide the 

correct cluster label of data point Xi. 

 If Xi is close to the boundary points of cluster C1 or C2. In this case, we have to 

check max 1 1 max 1 2( , ) ( , )D X C D X C .  

 

 

 

 

 

 

 

 

 

 

 

 

 
 Xj 

d ( Xj ,C2) 

d ( Xj ,C1) 

C

2 

C

1 

 

http://www.iioab.org/


| SPECIAL ISSUE| ENERGY, ENVIRONMENT, AND ENGINEERING 

SECTION: RECENT ADVANCES IN BIG DATA ANALYSIS (ABDA) 
 

www.iioab.org    | Kumar and Kumar. 2016 | IIOABJ | Vol. 7 | 11 | 160-170 | 

 

164 

G
u

e
st

 e
d

it
o

rs
: 
N

. 
A

ru
n

 K
u

m
a

r 
&

 P
. 
M

o
h

a
m

m
e

d
 S

h
a

k
e

e
l 

Fig. 1: First Case when d (Xi, C1) = d (Xi, C2), i.e., distance from the centroids are equal. 

…………………………………………………………………………………………………………………. 

 

 
  

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2: The Second case when the new data point is close to the boundary points of a cluster. 

…………………………………………………………………………………………………………………. 

Therefore, to discover a similarity coefficient for the unlabeled data on cluster iC  Euclidian distance 

method is used. Equation-3 gives the Euclidian distance between an unlabeled data point jx and mean 

estimation of cluster ci. 

              2

1

( |||, ) |

1

n

mean j i j i

j

k

D x c min x mean c

i

 


                 (3) 

Where,  ,mean j iD x c is the Euclidean distance between the unlabelled data point jx  and the centroid of 

the cluster ic . The ( )imean c represents the mean value of all the data points in the cluster ic or centroids. 

 

Similarly, the equation-4 and 5 gives the Euclidian distance between an unlabeled data point jx and the 

nearest boundary points of a cluster iC . 

                                             2

1

( |||, ) |

1

n

max j i j i

j

k

D x c min x max c

i

 


                                  (4) 

Where,  ,max j iD x c  represents the Euclidean distance between the unlabelled data point, jx  and the 

maximum value of cluster ic . 

                                            2

1

( |||, ) |

1

n

min j i j i

j

k

D x c min x min c

i

 


                                 (5) 

Where,  ,max j iD x c  represents the Euclidean distance between the unlabelled data point jx  and the 

minimum value of cluster ic . 

 

So based on the above cases equation-6 shows a new similarity measure (SC) between the new incoming 

data points jx  and the cluster ic .  

         , min , , ,j i mean j i max j i min j iSC x c D x c D x c D x c                                                            (6) 

We have considered the mean and spread of the data inside the cluster as a similarity measures to give 

cluster labeled to unlabeled data points. The proposed approached is explained with the help of exam.1. 

 

Example-1: Consider the artificial dataset given in [Table 1]. The dataset comprises of two numerical 

attribute A1, A2, and having nineteen data samples. These data samples are divided into three cluster c1, 

c2, and c3. Each cluster has five data points. Based on similarity coefficient described in equation-6, the 

cluster label to unlabelled data points x16, x17, x18, and x19 in clusters c1, c2, and c3 are obtained as 

follows: 

          16 1 16 1 16 1 16 1, min , , ,mean max minSC x c D x c D x c D x c    

         =18.04217+24.73863+15.65248= 58.43328241 

According to the above-calculated similarity coefficient values, we can assign c1 cluster label to, 16x  since 

the distance between the data point and the value of SC is minimum as compared to other clusters. For 

other unlabeled data points, a similar approach has been used and it is summarized in [Table 2]. Final 

cluster assignment to unlabelled data points is given in [Table 3]. 

 

The example shows that our proposed similarity coefficient preserves the characteristics of clustering, i.e., 

both high intra-cluster similarity and small inter-cluster similarity. 

 

dmax ( Xj ,C2) 

dmax ( Xj 

,C1) 

C

2 

C

1 

Xj 
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                                              Table 1: Artificial dataset 

 

 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 
 

                Table 2: Distance matrix of unlabelled data points w.r.t mean 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3: Sum of distance matrix and final cluster assignment for unlabelled data points 

 

 

 

 

 

 

 

 

 

Given X data points, the proposed algorithm incrementally arrives at a cluster solution upon receiving a 

new data point, Xj as follows: 

Step 1. Compute the sample data from the sequential data X, s= (n/p), p is the available physical 

memory, n is the number data point. 

Step 2. Normalize the X by min-max normalization algorithm. 

Step 3. Apply k-means (or any other partitioned clustering algorithm) clustering algorithm on sample 

dataset X to create Ci partition. Assigned obtained centroid as Centroidold and cluster label as 

Cluter_labelold 

Data point A1 A2 Cluster 

x1 11 52 c1 

x2 13 45 c1 

x3 14 44 c1 

x4 15 57 c1 

x5 19 40 c1 

x6 31 60 c2 

x7 35 62 c2 

x8 34 71 c2 

x9 39 73 c2 

x10 30 78 c2 

x11 61 51 c3 

x12 64 56 c3 

x13 67 58 c3 

x14 72 59 c3 

x15 76 55 c3 

x16 25 33 ? 

x17 33 39 ? 

x18 36 73 ? 

x19 16 51 ? 

  c1 c2 c3 Cluster assignment 

Dmean x16 18.04217 35.80894 44.99822 c1 

x17 20.49195 30.25029 36.01722 c1 

x18 33.34247 39.42436 11.65504 c3 

x19 3.757659 24.75237 30.1171 c1 

Dmax x16 24.73863 47.12749 57.24509 c1 

x17 22.80351 39.45884 47.42362 c1 

x18 23.34524 5.830952 42.37924 c2 

x19 6.708204 35.4683 60.53098 c1 

Dmin x16 15.65248 27.65863 40.24922 c1 

x17 22.02272 25.23886 30.46309 c1 

x18 41.40048 21.40093 33.30165 c2 

x19 12.08305 9.486833 45 c2 

   c1 c2 c3 Cluster labeled 

x16 58.43328 110.5951 142.4925 c1 

x17 65.31817 94.94799 113.9039 c1 

x18 98.08818 66.65624 87.33593 c2 

x19 22.54891 69.7075 135.6481 c1 

http://www.iioab.org/
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Step 4. Find the minimum, maximum, and means of each cluster Ci 

Step 5. Upon receiving a new data point Xi, assign a cluster label as i by using the similarity coefficient 

defined in equation-6. 

Step 6. Obtained Centroidnew 

Step 7. Update the centroidold = Centroidnew and append the cluster label to Cluter_labelold. 

Step 8. X=X+1; go to step 5. 

 

The pseudo code of the proposed algorithm is given in [Fig. 3]. 

 

Algorithm: IBCA 

Input: Dataset X, number of cluster k 

Output: Cluster labeled to unlabeled  of data points 

(n×m) ←size (X) 

Compute the sample data size, s= (n/p), p is the available physical memory 

Initialize the variable seed as k*m array 

Initialize min_data_cluster, max_data_cluster, distance as an (k*m) empty array 

Load X as an s sized sample dataset 

Apply any clustering algorithm on sample dataset to create partitions 

Assign obtained centroid to seed array 

for i=k+1 to n do 

    for j=1 to k do 

         Compute the minimum, maximum and mean value of the ith numerical attribute on jth cluster and 

assign these value to min_data_cluster[i][j], max_data_cluster[i][j], and mean_data_cluster[i][j] 

respectively 

     end 

for p=1 to L do  

            initialize max_similarity=0 

      for i=1 to k 

 find the similarity between a Pth  unlabelled data points  and a ith cluster according to similarity 

coefficient (6) 

       if max_similarity < similarity then 

            max_similarity=similarity 

            label=p 

       end 

      end 

 assign label value to unlabelled data points as cluster label 

end 

   Fig. 3: The pseudo-code of the proposed algorithm. 

  ……………………………………………………………………………………………………………………… 

 
EXPERIMENTAL SETUP AND RESULTS 
 
We ran the proposed algorithm on several datasets. The datasets are taken from the UCI machine learning 

repository, and the summaries of their characteristics are given in [Table 4] [22]. The dataset s1, s2, s3, 

and s4 are artificial datasets consisting of Gaussian clusters with the same variance but increasing 

overlap. Some of these datasets is available on the web page https://cs.uef.fi/sipu/datasets as 

mentioned in the literature [23]. All the experiments are performed on Intel Core™ i3-2348M machine with 

2GB of RAM. 

Table 4: Data Set description 
Dataset Data Set 

Characteristics 
Number of 
features 

Number of 
data objects 

Number of 
Clusters 

Iris Multivariate 4 150 3 

Wine Multivariate 13 178 3 

Thyroid  Multivariate 5 215 3 

WDBC Multivariate 32 569 2 

s1-s4 Artificial 2 5000 15 

 

We have compared the performance of the proposed method with other variants of sequential k-means 

algorithm. We have used running time, Dunn’s, and Davies-Bouldin (DB) index as parameters for the 

comparison of experimental results. Several runs of each algorithm have been performed, and most 

significant digits of the result are shown. 

 

The Dunn's index measure is used to find the compactness of the data points within the cluster and 

cluster’s separation (minimum distance between clusters). The maximum value of the index represents 

http://www.iioab.org/
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the right partitioning. The Davies-Bouldin index (DB) criterion is based on a ratio of within-cluster and 

between-cluster distances. A Smaller value of DB shows a better clustering solution [24]. 

 

First, we made running time analysis of the proposed method (IBCA) with Block-Mode-k-means, Online-k-

means, and Sequential-k-means. By analyzing, the results, we have observed that the proposed 

approached have better time complexity with Sequential k-means and its other variants for the data set 

used in the experiments, see [Fig. 4]. We have also analyzed the seeding issue of the k-means algorithm 

and find that the running time is higher than the proposed work, but the quality can be improved 

significantly by choosing proper initial centers. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4:  Running time analysis of different variants of Sequential k-means algorithm. 

……………………………………………………………………………………………………………………… 

As mentioned in the proposed approached the first block of data is clustered with the k-means algorithm 

can have poor clustering results due to a random selection of initial centers. Therefore an initialization 

algorithm k-means++ and k-medoids has been used in the initial phase. However, with the good initial 

guess of centroids consume some amount of time compared to other algorithms, but the quality of the 

cluster is good.   

 

The next set of experiment examines the quality of clustering results on various dataset mentioned in the 

[Table 4]. Results on these data sets are tabulated in the [Table 5-12]. The experimental results show that 

the quality of the clustering results of the proposed algorithm is equivalent to the traditional sequential k-

means algorithm except for the dataset S1 see Table-9. However, other algorithms perform better than the 

proposed algorithm, but the running cost of these algorithms is high; see [Fig. 5] and [Table 5-12]. 

 

Table 5: Comparative results on the iris dataset 
  Sample Size 15% 25% 50% 75% 100% 

Dunn IBCA 0.776 0.9449 1.3442 1.2427 1.2124 

Block-Mode-K-means 2.0197 1.3261 1.4959 1.3375 2.0279 

Online-K-means 2.0197 1.5961 2.1545 1.9433 1.994 

Sequential-K-means 0.776 0.9449 1.3442 1.2427 1.2124 

K-means++ 2.219 1.4856 1.5067 1.8818 1.6197 

K-medoids 2.219 1.6488 1.4959 1.252 1.9557 

DB IBCA 0.9714 1.283 0.699 0.6673 0.6466 

Block-Mode-K-means 0.7004 0.6694 0.656 0.6593 0.7629 

Online-K-means 0.7004 0.649 0.6894 0.7209 0.7043 

Sequential-K-means 0.9714 1.283 0.699 0.6673 0.6466 

K-means++ 0.5114 0.5956 0.641 0.7269 0.7812 

K-medoids 0.5114 0.6401 0.656 0.6494 0.7622 

 

Table 6: Comparative results on the iris dataset 
  Sample Size 15% 25% 50% 75% 100% 

Dunn IBCA 0.6907 0.6821 0.783 0.715 0.673 

Block-Mode-K-means 1.1739 0.6364 0.8521 0.9842 1.3211 

Online-K-means 1.1699 0.6415 0.8926 1.0284 1.2896 

Sequential-K-means 0.6907 0.6821 0.783 0.715 0.673 

K-means++ 1.3304 0.65 1.4457 0.9607 1.2934 

http://www.iioab.org/
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K-medoids 1.0369 0.6148 0.9629 1.0635 1.2934 

DB IBCA 2.3034 2.1126 1.8226 1.7863 1.865 

Block-Mode-K-means 1.5655 1.7807 1.8474 1.857 1.3683 

Online-K-means 1.4912 1.7821 1.9328 1.6605 1.188 

Sequential-K-means 2.3034 2.1126 1.8226 1.7863 1.865 

K-means++ 0.9941 1.7547 1.1976 1.8361 1.3746 

K-medoids 1.747 1.8287 1.6531 1.4858 1.3746 

 

Table 7: Comparative results on the thyroid dataset 
  Sample Size 15% 25% 50% 75% 100% 

Dunn IBCA 1.382 1.2703 1.2955 0.7612 0.8163 

Block-Mode-K-means 1.3711 1.295 1.4407 0.6743 1.4785 

Online-K-means 1.1973 1.2043 1.1764 0.697 1.4785 

Sequential-K-means 1.382 1.2703 1.2955 0.7612 0.8163 

K-means++ 1.3821 1.247 1.3719 2.0212 1.4785 

K-medoids 1.2612 1.2138 1.1245 0.6743 1.4812 

DB IBCA 0.8864 1.304 1.3246 2.3526 1.692 

Block-Mode-K-means 1.0319 1.3567 1.3497 0.8977 0.7712 

Online-K-means 1.2869 1.0813 1.1516 0.8867 0.7712 

Sequential-K-means 0.8864 1.304 1.3246 2.3526 1.692 

K-means++ 1.0377 1.3829 1.3264 0.7543 0.7712 

K-medoids 1.3343 1.3413 1.4192 0.8889 0.7591 

 

Table 8: Comparative results on the Wdbc dataset 
  Sample Size 15% 25% 50% 75% 100% 

Dunn IBCA 1.1907 1.0946 1.1667 1.2507 1.2609 

Block-Mode-K-means 1.2707 1.1479 1.2403 1.26 1.281 

Online-K-means 1.2707 1.1644 1.2403 1.2594 1.2526 

Sequential-K-means 1.1907 1.0946 1.1667 1.2507 1.2609 

K-means++ 1.2707 1.1479 1.2403 3.0377 1.2727 

K-medoids 1.2707 1.1644 1.2403 1.2599 1.2526 

DB IBCA 1.432 1.4879 1.4218 1.3247 1.3138 

Block-Mode-K-means 1.3388 1.4304 1.337 1.308 1.3093 

Online-K-means 1.3388 1.4167 1.337 1.3083 1.3205 

Sequential-K-means 1.432 1.4879 1.4218 1.3247 1.3138 

K-means++ 1.3388 1.4304 1.337 0.6383 1.3123 

K-medoids 1.3388 1.4167 1.337 1.3081 1.3205 

 

Table 9: Comparative results on the S1 dataset 
  Sample Size 15% 25% 50% 75% 100% 

Dunn IBCA 0.0434 0.0429 0.0958 0.0992 0.1262 

Block-Mode-K-means 0.6396 0.572 0.5384 0.5308 0.5361 

Online-K-means 0.856 1.3119 1.1437 1.4073 4.1649 

Sequential-K-means 1.1144 0.8647 0.672 0.7699 0.9218 

K-means++ 1.3588 1.2671 1.0654 1.2126 0.5689 

K-medoids 0.649 0.6163 0.5797 0.4326 0.4884 

DB IBCA 1.1144 0.8647 0.672 0.7699 0.9218 

Block-Mode-K-means 0.6292 0.7492 0.5244 0.4113 0.3685 

Online-K-means 0.6688 0.6497 0.5373 0.4185 0.3103 

Sequential-K-means 0.0434 0.0429 0.0958 0.0992 0.1262 

K-means++ 0.572 0.6521 0.5375 0.3991 0.3812 

K-medoids 0.7194 1.2003 1.0195 1.4404 0.5075 

 

Table 10: Comparative results on the S2 dataset 
  Sample Size 15% 25% 50% 75% 100% 

Dunn IBCA 0.059 0.0836 0.1142 0.1766 0.216 

Block-Mode-K-means 0.5403 0.2731 1.0723 0.44 0.4402 

Online-K-means 1.0036 1.3485 1.1676 1.0043 0.8079 

Sequential-K-means 0.059 0.0836 0.1142 0.1766 0.216 

K-means++ 1.113 1.0976 1.3025 0.7557 0.8944 

K-medoids 0.7646 1.1433 1.3437 1.1472 0.7811 

DB IBCA 0.7464 1.0436 0.7911 0.7799 0.7587 

Block-Mode-K-means 0.6532 0.6729 0.5079 0.5297 0.5748 

Online-K-means 0.7687 0.7557 0.6258 0.495 0.4731 
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Sequential-K-means 0.7464 1.0436 0.7911 0.7799 0.7587 

K-means++ 0.735 0.7254 0.6134 0.5707 0.5398 

K-medoids 0.7429 0.7054 0.6002 0.5154 0.6024 

 

Table 11: Comparative results on the S3 dataset 
  Sample Size 15% 25% 50% 75% 100% 

Dunn IBCA 0.0602 0.1643 0.2089 0.3142 0.4914 

Block-Mode-K-means 0.9009 1.1579 1.2956 1.7059 1.3395 

Online-K-means 1.0932 1.3964 1.4017 1.4246 1.4246 

Sequential-K-means 0.0602 0.1643 0.2089 0.3142 0.4914 

K-means++ 0.9422 1.3489 1.1727 1.7691 1.2206 

K-medoids 1.0335 1.4559 1.3767 1.3117 2.3305 

DB IBCA 0.9687 0.8973 0.8483 0.7616 0.7421 

Block-Mode-K-means 0.7107 0.7161 0.7131 0.633 0.6753 

Online-K-means 0.6666 0.7699 0.7149 0.6355 0.6355 

Sequential-K-means 0.9687 0.8973 0.8483 0.7616 0.7421 

K-means++ 0.7874 0.7674 0.7116 0.6319 0.6335 

K-medoids 0.6929 0.7318 0.7121 0.6763 0.5164 

 

Table 12: Comparative results on the S4 dataset 
  Sample Size 15% 25% 50% 75% 100% 

Dunn IBCA 0.1991 0.1189 0.1258 0.158 0.2634 

Block-Mode-K-means 0.6495 1.1921 0.9446 1.1518 1.3645 

Online-K-means 0.9852 1.3183 1.2853 1.2128 1.8504 

Sequential-K-means 0.1991 0.1189 0.1258 0.158 0.2634 

K-means++ 1.1877 1.5787 1.5168 1.6513 1.7998 

K-medoids 0.5339 0.9537 1.4689 1.5466 1.5538 

DB IBCA 0.8064 0.7998 0.8714 0.859 0.8131 

Block-Mode-K-means 0.7108 0.7036 0.7518 0.7325 0.6596 

Online-K-means 0.6802 0.6723 0.7119 0.658 0.5596 

Sequential-K-means 0.8064 0.7998 0.8714 0.859 0.8131 

K-means++ 0.6326 0.6841 0.6847 0.6578 0.6002 

K-medoids 0.6892 0.742 0.6477 0.6177 0.641 

 

 
SUMMARY 
 
In this work, we propose an efficient method for clustering large data that does not fit into the system 

available physical memory. The key idea in handling the large dataset is to divide it into a fixed sample size 

and then perform clustering on each sampled data. We have used results of the previously computed 

cluster along with its boundary point to assign the cluster labeled to unlabeled data points. A series of 

experiments are performed on the benchmark datasets suggest that the proposed work can be utilized as 

an alternative to sequential k-means for clustering large data set as it has better running time complexity 

and similar cluster quality outcome. The Proposed IBCA algorithm competes with sequential k-means along 

the time and accuracy dimensions 
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