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[I] INTRODUCTION
 

It has been shown in recent years [1-3] that a high amplitude 

electromagnetic beam propagating in plasma is unstable to 

small-amplitude perturbations. This instability causes the 

breaking of the beam into filaments and is known as 

filamentation instability [1]. On the time scale t>h (which is 

more relevant to laser – plasma interactions), where h is the 

heating time of electrons, the nonlinearity arises through 

nonuniform heating and redistribution of electrons [4]. The 

understanding of filamentation of laser light may be important 

to the success of laser fusion. In the long scale length plasmas 

envisioned for reactor targets, local intensity hot spots caused 

by self-focusing or laser light filamentation can drive the 

plasma above parametric instability thresholds. These 

instabilities tend to be saturated by the creation of super 

thermal electrons [5]. The hot electrons can penetrate deeply 

into the pellet, heating the interior, making high compressions 

difficult. Directly driven targets require very uniform driving 

pressures. Filamentation could spoil this uniformity, making 

large compressions difficult. The laser light absorption, 

penetration, and conversion to X-rays could also be affected 

by self-focusing [1] and filamentation. The earlier 

investigations of filamentation of laser beams on a long time 

scale are restricted to large-scale perturbations where the 

thermal conduction effects may be neglected [6]. But in the 

cases of real interest one is much more concerned about the 

growth of small-scale perturbations where thermal conduction 

could play a dominant role in determining the energy 

dissipation of electrons. The relative size of perturbations 

depends on the ratio mi/m, since beam radius ro is generally of 

the same order as electron mean free path m. In this paper we 

have studied the filamentation of laser beams in plasmas 

where both collisional and thermal-conduction losses are 

present simultaneously. At short wavelengths collisional 

effects considerably influence laser plasma interaction. The 

nonlinear process of stimulated Raman scattering is seen to 

require laser power greater than a threshold value, determined 

by collisions. In several experiments the observed values of 

threshold power are far below the values predicated 

theoretically [7-19]. Liu and Tripathi [14] have developed self-

consistent theoretical model to obtain B-SRS growth rate in a 

cylindrical filament in collisionless plasma. They take the size 

of the filament to correspond to the maximum linear spatial 

growth rate for the filamentation instability, with the result that 

for typical laser intensities the SRS growth rate is only 

marginally changed from its value in the unfilamented incident 

beam. Afshar-rad et al. [15] have studied the evidence of 

stimulated Raman scattering occurring in laser filaments in 

long scale length plasmas. Drampyan [16] has studied the 

evidence of self-focusing and stimulated Raman scattering 

beam break-up into several filaments and filament 
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development in a self-focused beam, as a result of azimuthal-

angle instability. Sajal et al [19] have studied the relativistic 

forward stimulated channel in a plasma Raman scattering of 

laser in a plasma channel. Recently Yin et al. [20] have studied 

Onset and saturation of backward stimulated Raman scattering 

of laser in trapping regime in three spatial dimensions. 

Ghanshyam et al. [21] have studied model of stimulated 

Raman scattering from underdense collisional plasma without 

considering thermal conduction in which the laser intensity 

profile and plasma density have been modified by the 

filamentation instability. A circularly polarized Gaussian laser 

beam propagating through a low density plasma creates a 

partially electron depleted channel. The laser generates 

stimulated forward Raman scattering, producing a plasma 

wave and two radially localized electromagnetic sideband 

waves. The laser and the sideband waves exert an axial 

ponderomotive force on electrons driving the plasma wave. 

The latter couples with the pump to drive the sidebands. The 

radial width of the electromagnetic sideband is of the order of 

the spot size of the pump, r0, whereas the radial width of the 

plasma wave is determined by the growth rate of the Raman 

process. The localization effect reduces the region of 

interaction and the growth rate. There is a significant 

motivation to operate free electron laser (FEL) in a plasma 

medium. The plasma aids electron beam guiding via charge 

and current neutralization and allows beam current higher than 

the vacuum limit. It may also help radiation guiding [17] via 

optical duct formation. Plasma, however, is a nonlinear 

medium. When FEL interaction takes place in a plasma 

medium and laser radiation acquires large intensity, it may 

bring about the onset of parametric instability, e.g., stimulated 

Raman scattering and Brillouin scattering that may stabilize 

the FEL instability and increase radiation band width. If one 

limits the plasma density to a lower level, then the Langmuir 

wave generated in the Raman process possesses smaller phase 

velocity and undergoes Landau damping. SRS is considered to 

be an important process in laser produced plasma also, here 

severely limits the deposition of the light energy. In this 

process, intense laser light interacts with a Langmuir wave and 

is scattered backward. The scattered wave and the laser pump 

exert a Ponderomotive force on the electron driving the 

Langmuir wave. 

  

In this paper, we examine stimulated Raman backscattering of 

laser radiation in a performed plasma channel considering the 

effect of thermal conduction and follow the approach adopted 

by Short et al. [17] and Tripathi et al. [14]. The channel 

provides radial localization of the pump and decay waves. 

However, since the mode structure of three interacting waves 

is different, the nonlinear coupling coefficients are 

significantly diminished. In section 2, we examine fluid 

equations and Maxwell’s equations to the coupled mode 

equations inside the filaments. These equations are solved 

using first-order perturbation theory neglecting pump 

depletion effects. The result is a nonlinear dispersion relation 

which is solved to obtain growth rate.  In section 3, we discuss 

the results. 

  

 
[II] METERIAL AND METHODS 
 
2.1. Instability analysis 

 
Let us consider the propagation of a plane uniform laser beam 

in collisional plasma along the z-axis,  

          E  = 0A  (r, z) exp [-i (t- ko z)],    (1)                 

                

 ko = (/c) 
2

1

2

2

1



















 po
,     (2)  

      

 menopo /4 22                      (3)  

              

and , po, c, -e, m and no are the frequency of the main beam, 

the unperturbed plasma frequency of the medium, the velocity 

of light, the electron charge, the electron mass and the 

unperturbed concentration of the plasma respectively. In the 

presence of the field (1), the electrons acquire drift velocity in 

accordance with the momentum balance equation 

  m
t

v




 = -e E -mei v ,                               (4)   (4) 

where νei  is the electron collision frequency. Expressing the 

variation of v as exp [-i(t-kz)], we obtain, in the limit    
22
ei  , 

  v = 















eii

im

Ee
1 .                                    (5)   (5) 

Besides this, the electrons absorb energy from the wave at the 

rate of -e E . v . Whose time average is 

 –
2

1
e E *. v = 

2

*2

2 m

AAe oo .                            (6)  (6) 

In the steady state the rate of energy gain must balance with 

the rate of energy loss through collisions and thermal 

conduction. Hence  

 –  oeeie TTT
n









 



2

3
.  = 

2

*2

2 



m

AAe ooei ,  (7) 

where                                                          (7) 

 
ei

th
v

n 


2

 ,  (8) 

  = 2m/mi  

is the fraction of excess energy lost per electron-ion energy 

exchange collision, Te is the nonlinear field – dependent 

electron temperature and vth =  2

1

/2 mTo  is the electron 
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thermal speed. For 22 / thoei vr < (ei) thermal conduction is 

important, and we solve the energy – balance equation in the 

perturbation approximation. For a beam of finite extent we 

express  

   Te = To + Te,                                                 (8) 

 

where Te <<To . Then Eq. (7) can be recast as  

 
2
(Te) – 

2

2

2

3

th

ei

v


(Te) = – 

2

22

22

2
o

th

ei A
vm

e





  (9)

 

Now we perturb the beam by a perturbation  

 A1 (r, z) exp [–i (t–kz)],                              (10) 

where A1 (x,z) is not necessarily a slowing varying function of 

space variables. The total electric vector of the laser may now 

be written as  

   E   =  Ao   +   A1 (r, z) exp [–i (t–kz)],        (11) 

 

Where  r = (x
2
 + y

2
)

1/2
 refers to a cylindrical polar co-ordinate, 

Ao is the amplitude in the absence of fluctuations (polarized in 

the y direction) and A1 is the amplitude of the fluctuations, 

which is a spatially slowly varying function. The combined 

effect of these two fields is to heat the electrons and exert a 

pressure-gradient force, causing redistribution of plasma via 

ambipolar diffusion. The nonlinear field-dependent electron 

temperature Te in the steady state may be obtained by solving 

Eq. (9) only the x and y dependence of A1 is known. Taking A1 

 e
iq.r 

with q||<<q, where q = q+q|| is the scale length of the 

perturbation (the subscripts||and referring to components 

parallel and perpendicular to the z direction), Te may be written 

as  

 Te –T0 = 
  

/2

2
0

*
110

2

3

.

m

AAAAe 

                             (12)

 

Where 
2

22
/

33

2

ei

th

v

vq
    

As a result of non-uniformity in heating, the plasma is 

redistributed so that  

 n (Te+T0) = n0(Te0 + T0),                                (13) 

where Te0 =T0 + 
/2

2
0

2

3 m

Ae
.                                 (14) 

Using Eq. (12), (13) and (14), the modified electron density may 

be written as 

 n = n0 
 

 
.

3/23

.
1

/
0

22
0

2/2
0

*
110

2




















 TmAemT

AAAe
       (15) 

The dielectric constant of the plasma may be written as 

  = 0+ 2 A0.  *
11 AA  ,                                  (16) 

where  

    2 = 
2
0

2

2

2 PA

Ppo










 

 P =
222 3/21

1

eith
vvq

 

 and 

     = 
 0

2

2

3 Tm

e
.  

Substituting E, from Eq. (1) into the wave equation and 

using. (E) = 0 and linearizing in A1, we obtain the 

following equation for A1:  

2i k0 0
21

*
11

2

2

2
011

2
1

2
1 






































opA

AApoA

c

p

r

A

rr

A

z

A




,(17)                                                                    

following Sodha et al.[1] and expressing A1 = A1r + iA1i  

Eq.(17) splits into two coupled equations for A1r  and A1i : 

2 k0 0
1 1

2
11
















r

A

rr

A

z

A
iir

,    

        (18) 

– 2 k0 0121

2

2

2
0

2
11

2
1

2
1 


























rA

oAp

oAp

c

p

r
rA

rr

rA

z
iA




  

For A1r, A1i ~ Jo (qr) 
ze

 Eq. (18) straight way yields the 

spatial growth rate  
2/1

2
222 2

2 





















o

o
o

o

A
kq

k

q
.    

                     (19) 

The spatial growth maximizes to  

21

2

222

0

2

max
oAp

oAp

cok

p






                                 (20)                                    

       

       

                                

at 

qopt =

2/1

21

2















 oAp

oAp

c

op




,     

    

where ,
||

,
6

1

2

2
2

o
o

s

o
o

m

Aoe
V

c

V
A


   

2/1
2
















i

o
s

m

T
c and mi is the mass of 

ion. The first zero of Jo occurs at qr = 2.4 .The amount of power 

tends to localize in maximally growing filament can be 

expressed as  

P
/
 = 

2

o

2Ar
8

c



 

= 4.3 






  21
22

2223
oAp

poe

omscc




 .    (21)  

     

Following Sodha et. al.
 1

 the temperature and density profile in 

the filament can be written as  



REGULAR ISSUE  

Ghanshyam and Verma 

___________________________________________________________________________________________  

   

  

      IIOAB-India       Ghanshyam and Verma Vol. 2; Issue 7; 2011:31–38 

 
34 

                           w
w

w
.iio

a
b

.o
rg

                                                                                        
 

   
                                            w

w
w

.iio
a
b

.w
e
b

s
.c

o
m

 
B

IO
 P

H
Y

S
IC

S
 

Te = To 




  221 opA   





  ropE2
121  ,  

 











ropE

on
on

2
11

/



, 

 = o 




























on

on

oT

eT /2/3

,     

                          (22) 

and  

1 =
221 opA





,                                                    (23) 

where oE (r) is the total electric field of filament at r and o is 

collision frequency corresponding to no and To, Expressing 

oE (r) for cylindrically symmetric beam, as oE = A (r, z) exp {-

i(o t – ko z)}and neglecting 
2

2

z

A





  

in wave equation which  

implies that the characteristic distance (in the z directions) of the 

intensity variation is much greater than the wavelength and 

following Sodha et al.[1] a self-consistent solution of the wave 

equation under the modified density and temperature profile 

turns out to be  

A = A0(r,z) exp (-ikS), 

 22
0

/2exp
2

2
00),(

2
0 frr

f

E
zrA  , 

 S (r,z) =    zz
2

r 2
  ,                               (24) 

dz

df

f

1
 , 

where f is the ratio of the beam diameter to its value at z = 0, 

  corresponds to the inverse radius of the curvature of the 

wave front. The beam width parameter, f (z), scales the beam 

radius. As f (z) decreases, the intensity increases as 1/f
2
(z) in 

order to conserve energy. The eikonal gives an ordinary 

differential equation for f(z) if it is expanded to order r
2
. This 

expansion is known as the paraxial ray approximation since it 

emphasizes the importance of the paraxial (those near r = o) 

rays. The aberration less and paraxial ray approximations are 

essentially synonymous since they yield a set of solutions 

characterized by a single parameter that scales the shape of the 

beam. We obtain equation for the beam width parameter  

f: 
















2

2
00/

32
0

2
00

322

2 1

f

E

fr

E

fRdz

fd

d

 , 

 

32322

2 11

fRfRdz

fd

nd



     

                          (25)

 

where 
/  is the derivative of   with respect to its arguments 

and terms of order higher than r
2
 have been neglected. 

Employing paraxial ray approximation, the radius of nonlinear 

steady state self-trapped cylindrical filament propagating 

through a homogeneous plasma can be obtained from Eq. (25) 

balancing diffraction and self-focusing terms, 
22
nd

RR        

       (26) 

where  

Rd = ko
2

or  

and  

2
1

2
2

11
2

2

2

oopE

oopE

or

po

o
nR







 






 



         .

 

 

Equation (24) determines the radius ro of a self-trapped 

filament,  

      ro = 
2/1

2
1

2
11

















 

oopE

oopE

po

c







,      

                    (27) 

where Eoo is the amplitude of the filament of radius ro, in the 

nonlinear state, on the axis. The corresponding power in 

nonlinear steady state is  

       P = 22

8
ooo Er

c



 

      = 
p

oopE

po

c

1

2
2

11

28

3














 
. 

 

Equating the power contained in the filament p to p
/
 one 

obtains  












































 1

2/1
221

2/1
21

4.22
1

opA

opA

oopE






.    

                               (28) 

Thus the radius and field intensity in a self-trapped filament are 

dependent of the initial power density of the incident beam. The 

modified density, temperature and collision frequency variation 

near the axis of the filament can be obtained by expanding 

eo Tn ,/ and  around r  0  
















2

2
/ 1

a

r
nn o

oo ,      

                  (29) 

Te = 















2

2

1
b

r
T o

o ,      

                  (30) 
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 = 















2

2

1
d

ro
o ,      

                                                          (31) 

 

where 

a
2
 = 

2
1

2
112

oopE

oopEor



 






 

,            (32) 

     

b
2
 = 

2
12

2
1212

oopE

oopEor



 






 

,            (33)  

                           

 

d
2
 = 

22

22

23

2

ba

ba


             (34) 

                            








 


2

11 oopE

ono
on



,     

                           (35) 








 






  2
1212210

oopEopAoToT       

                                         (36) 

and  
2/3






























o

o
o

o
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The self –trapped laser decays into a low frequency Langmuir 
wave with scalar potential  

 =  (r) e
–i(t

 
–kz)
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and a backscattered electromagnetic wave 
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and  
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Ekc
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
 ,                                            

where  

okkk 1  

and  

1 =  – o.  

The pump and sideband waves exert a low frequency 

Ponderomotive force Fp on the electrons [1] 
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                  (40) 

where  ϕp is the Ponderomotive potential. Solving (40), one 

obtains 
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driving the Langmuir wave  
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 and we have assumed only collisional 

damping.  

 

The current density at the side band frequency can be written as  
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Using Eq. (45) in the wave equation we get  
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It is considered that the sideband wave is not affected by 

Landau damping. However, it may suffer damping due to 

collisions.  

One obtains 
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Equations (42) and (47) are coupled nonlinearly. When 

nonlinear coupling is ignored, the solutions of (42) and (47) are 

written as [17, 18]    
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where                                                             (48) 
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where  l= 0,1,2,....  , m = 0,1,2...  and 1 and m are 

normalization constants. Since the pump field (hence vo) scales 

as exp 















2

2
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r
, the most unstable backscatter mode would 

correspond to m = 0. In the presence of nonlinear coupling 

terms, it is possible to express   in terms of an orthogonal set 

of wave functions ϕl where as E1  in terms of E10 .Where as E1  

can be taken to be dominant mode: 
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lls , 

and  
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           (49) 

Substituting for   and E1 in (42) and (47) and multiplying the 

resulting equation by l  and E10, respectively, and integrating 

over rdr, one obtains  
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leading to a nonlinear dispersion  
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4

1
o  (kosc)(/o)

1/2
 is uniform medium growth rate and we 

have used vo  
22 a2/r

oscev 
. Since 1 is localized in a narrow 

region around r1 <<a. I1 (1) may be simplified to become  

I1  


0

3

2

2
drr

b
     

      (55) 

 

and  

Il(1)  
oo

drr
b

0

3

2

2
 .     

                  (56) 

 

Expressing  =  + i , the maximum growth rate can be 

expressed as [21]
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and the  uniform growth rate  
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The threshold intensity can be expressed as  .
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The threshold condition for B-SRS, when background plasma 

and intensity of laser beam is uniform is written as [21]
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[III] RESULTS AND DISCUSSION 
 

A uniform–laser beam propagating through collisional plasma 

is unstable to a transverse perturbations, and break up into 

filaments. An optimum value of q of the perturbation is 

required for a maximum growth rate. A uniform plane wave 

does not cause redistribution of carriers. However, as a result 

of perturbations in the intensity distribution along the wave 

front, electrons do become redistributed. The process of B-

SRS in a filament is aided by the enhancement of power 

density over its initial value but it is inhibited by the 

localization of Langmuir wave and hence of the interaction 

region. The Process of B- SRS is inhibited by thermal 

conduction   and it is observed that the power density inside 

the filament is much greater than the initial power density of 

the laser beam. Hence, the enhanced intensity in laser filament 

reduces collisional damping of backscatter light wave, 

diminishing the threshold power for B-SRS. The onset of B-

SRS is strongly correlated with intensity threshold of the 

filamentation instability that depends on thermal conduction. 

The growth rate of SRS is reduced by a geometrical factor Il 

and Il(1) depending on the mode structure of the pump and 

decay waves. The growth rate scales linearly with the 

amplitude of the laser wave.. In a plasma filled FEL, the 

Raman instability would limit the growth of FEL instability 

via diverting FEL wave energy into the Langmuir and the 

sideband waves. 
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