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[I] INTRODUCTION 

 
Chronic Cardiac hypertrophy (CH) is enlargement of heart 

resulting from increased myocyte size which is generally 

associated with numerous adverse cardiovascular outcomes, 

including depressed left ventricular ejection fraction, heart 

failure and overall mortality [1]. A number of cross-sectional 

studies have shown abnormalities in left ventricular systolic 

function among those with left ventricular hypertrophy and 

“diastolic” heart failure [2]. Analysis from the Multi-Ethnic 

Study in Atherosclerosis (MESA) showed an inverse association 

of left ventricular systolic function and left ventricular 

concentricity (LV mass/volume) by quartile [3]. Simultaneously, 

experimental studies have identified the molecular mechanisms 

and the key players of the pathology [4]. Oxidative stress has 

also been identified as one of the major contributing factors 

towards development of cardiac hypertrophy. In this review we 

will summarize the evidences supporting the oxidative stress as 

a cause of cardiac hypertrophy. 

 
1.1. Etiopathology of CH 
 

Cardiac hypertrophy has both genetic as well as post disease 

etiopathology. Increased wall stress is considered as the trigger 

factor towards CH. At cellular level, cardiomyocyte hypertrophy 

is characterized by an increase in cell size, enhanced protein 

synthesis, and heightened organization of the sarcomere unit [5]. 

On the basis of molecular changes CH is considered of two 

types, the first one is physiological CH, mostly seen in athlete’s 

heart and the other is pathological CH induced by mechanical 

stress, due to pressure overload or volume overload [6, 7]. In 

physiological hypertrophy, the increase in cardiac mass is not 

associated with induction of fetal gene program. It has also been 

found that there is no collagen deposition in the physiologically 

hypertrophied myocardium [8]. Hypertension, aortic stenosis, 

and myocardial infarction cause increased pressure overload 

over the myocardium to cause pathological CH, while, mitral 

valve regurgitation causes volume overload.  Induction of fetal 

gene expression in pathologically hypertrophied myocardium 

leads to myocardial dysfunction [9]. This reactive hypertrophy 

occurs in response to an extrinsic increase in cardiac work and is 

distinguished from genetic familial hypertrophic 

cardiomyopathy, where the stimulus for hypertrophy is intrinsic 

to the cardiomyocyte [10]. 

 
1.2. Oxidative stress and its role in CH 
 

Increased oxidative stress has been recognized as an important 

mediator in the setting of cardiovascular diseases [11]. Growing 

evidences support important pathophysiological roles of redox-

sensitive signalling pathways in the processes underlying CH 

[12]. Numbers of studies have found a strong association 

between development of CH and increased production of 

reactive oxygen species [13, 14]. In cultured cardiomyocytes, 

hypertrophy induced by angiotensin II, endothelin 1, tumor 

necrosis factor (TNF-α) or pulsatile mechanical stretch has been 

shown to involve intracellular ROS production which can be 

inhibited by antioxidants [15]. A recent experimental study 

reported that ROS production by uncoupled nitric oxide 

synthase may contribute to the development of left ventricular 

hypertrophy during chronic pressure overload [16]. The most 

widely recognized effect of increased oxidative stress is the 

oxidation and damage of macromolecules, membranes, DNA 

and enzymes involved in cellular function and homeostasis [17]. 

The mechanisms involved in regulation of cellular and 

extracellular events are the activation of key mediators of 

metabolic regulation by ROS as well as depletion or decreased 

activity of endogenous antioxidants [18, 19].  Apart from 

affecting cellular function, they do modulate the extracellular 

matrix function evident as increased interstitial and perivascular 

fibrosis [20]. Here we will discuss the sources of ROS 

generation and their role in modulating specific signalling 

pathways involved in CH. 

 

1.3. Sources of Reactive oxygen species 
 

Reactive oxygen species (ROS) also termed “oxygen-derived 

species” or “oxidants,” are produced as intermediates in 

reduction- oxidation (redox) reactions [21]. ROS are reactive 

chemical entities comprising two major groups: free radicals 

(e.g., superoxide [.O2-], hydroxyl [OH-], nitric oxide [NO-]) 

and non-radical derivatives of O2 (e.g. H2O2, ONOO¬-) [22, 

23]. A free radical contains one or more unpaired electrons 
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having capability of independent existence (thus called “free”) 

which renders them highly reactive and unstable entities. Non-

radical derivatives are less reactive and more stable with a 

longer half-life than free radicals. The various free radicals and 

non radical species commonly generated in the biological 

system are as follows:  

O2 + e¬- → O2¯* 

O2¯* + H → HO2* 

2HO2* → H2O2 + O2 

2H2O2 → H2O + O2 

H2O2 + LH2 → 2H2O + L   

O2¯* + H2O2 → O2 + HO¯ + HO*(Haber-Weiss reaction) 

H2O2+ Fe2+→Fe3+ HO¯ + HO*(Fenton reaction) 

 

Superoxide anion [O2-]: It is an oxygen molecule having a free 

electron and is generally produced by NADPH-oxidases in 

different cell types like phagocytes, fibroblasts, and endothelial 

cells [24]. It is also generated following auto-oxidation of 

catecholamines, tetrahydrofolates and electron leak from 

mitochondrial electron transport chain. Superoxide anion has 

short life, does not cross cell membrane and is readily detoxified 

by superoxide dismutase. It contributes in formation of highly 

reactive oxygen species, hydroxyl radical [23]. 

 

Hydrogen peroxide [H2O2]: It is a reactive oxygen species 

formed as end product of superoxide detoxification. It is a non-

radical entity, readily crosses the cellular and nuclear membrane 

and is degraded by catalase and glutathione peroxidase [25]. 

Some of the function of H2O2 include the upregulation of genes 

especially those controlled by nuclear factor-kB (NF-kB) 

transcription factor and the induction of intracellular Ca++ 

overload in cardiomyocytes which results in myocardial 

dysfunction [26].   

 

Hydroxyl radical [OH-]: It is the most potent free radical and so 

short lived. It is generated by two different reactions Haber-

Weiss and Fenton reaction involving superoxide anion, 

hydrogen peroxide, and reduced transition metal (Fe2+). Due to 

its radical nature, it is capable of initiating a free radical chain 

reaction.  

 

Nitric oxide [NO]: It is usually known for its ability to relax 

blood vessels. However, it also acts as a reactive oxygen 

species. It is soluble in both aqueous and lipid medium and is 

generated by enzyme mediated cleavage of arginine to citruline. 

Following increased production, it can react with peroxides and 

form peroxynitrite anion.  
 

1.4. NADPH oxidases  
 

The NADPH oxidase (Nox) enzyme is a family of enzymes 

which are major source of ROS production in cardiovascular 

system [27]. It was first identified in neutrophiles, where it is 

normally quiescent but gets activated during phagocytosis and 

generates high levels of ROS. NADPH oxidases are the only 

enzymes which are designed for purposeful ROS production 

[28]. It is a multi-subunit enzyme that catalyzes superoxide 

production by the reduction of oxygen using NADPH or NADH 

as the electron donor. The prototypical NADPH oxidase that is 

found in neutrophiles has five subunits: p47phox, p67phox, 

p40phox, p22phox (“phox” stands for phagocyte oxidase), and 

the catalytic subunit gp91phox. Till now there have been seven 

oxidases reported out of which five oxidases (Nox1-Nox5) 

called as Nox and two remotely related oxidases Duox1 and 

Duox2. These different homologs differ in their structure, 

distribution and mechanism of activation, but all the Nox have 

the basic similarity in having a cytosolic NADPH binding 

domain and a heame centre. The oxidase activity occurs when 

cytosolic NADPH binding domain binds to NADPH, transfers 

electrons to FAD and the heame centres and finally to oxygen 

on the outer membrane surface, resulting in superoxide 

formation. 

 

1.5. NADPH oxidase involvement in LVH 
 

The presence of NADPH oxidases in cardiovascular cells 

including endothelial cells, adventitial fibroblasts, vascular 

smooth muscle and cardiomyocytes has been reported. NADPH 

oxidase in cardiovascular cells continuously generates 

intracellular ROS and its activity may be significantly enhanced 

by several different stimuli, e.g. AngII, α-adrenergic agonists 

and TNF-α [29-31]. ROS derived from the oxidase also 

appeared to contribute to the inactivation of endothelium-

derived nitric oxide and the consequent left ventricular diastolic 

dysfunction [32]. In cardiomyocytes, Nox2 and Nox4 are 

specifically present [33, 34]. In experimental pressure-overload 

left ventricular hypertrophy induced by aortic banding in 

guinea-pigs, Li et al have reported increased NADPH oxidase 

subunit expression as well as activity in both cardiomyocytes 

and endothelial cells [35]. In subsequent study, the role of the 

Nox2-containing NADPH oxidase in angiotensin II-induced as 

well as aortic banding-induced CH was investigated using 

Nox2-/- mice. Interestingly, Nox2 deficient mice developed less 

hypertrophy than the wild type mice against Ang II infusion. 

However, following pressure overload hypertrophy, there was 

no difference observed between Nox2-/- mice and wild type 

mice in morphological left ventricular hypertrophy and the 

associated rises in mRNA expression of molecular markers such 

as ANF, suggesting involvement of Nox 4 in pressure overload-

induced CH. In subsequent study, Nox2 -/- failed to protect 

against CH induced by infusion of blood pressure increasing 

dose of Ang II, however protected against fibrosis [36]. 

However, Nox2-/- mice were protected against pressure 

overload-induced myocardial dysfunction without having any 

effect on CH [37]. Studies investigating the role of Nox4 and 

mutant form of Nox4 (inactive form) reported no change in 

hypertrophic index however depressed ventricular function was 

noted [38]. In the same study, adenoviral mediated 

overexpression of Nox4 in cardiomyocytes resulted in tunnel 

positive cells, reflecting apoptosis without any change in cell 

size. These reports do suggest role of Nox2 and Nox4 in cardiac 

dysfunction subsequent to CH, however their contribution 
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towards hypertrophy and function alteration is still not 

unambiguous.  

 
1.6. Xanthine oxidase  
 

Increased xanthine oxidase activity has been reported in both 

clinical and preclinical condition of myocardial dysfunction. 

However, the enzyme has not been investigated widely for its 

role in CH. The first study by Xu et al., investigated the effect of 

Febuxastat, a xanthine oxidase inhibitor, against thoracic aortic 

constriction induced left ventricular hypertrophy and 

dysfunction in mice [39]. Febuxastat inhibited the hypertrophic 

response along with improving the myocardial function. 

However, the study did not show a direct estimation of xanthine 

oxidase activity in heart, rather it used serum uric acid level as a 

marker of xanthine oxidase activity. In another report from the 

same group, late inhibition of xanthine oxidase did not affect the 

development of CH [40]. 

 
1.7. Antioxidant defense system    
 

Antioxidants are the substances that when present at low 

concentrations relative to an oxidizable substrate, significantly 

delay or prevent oxidation of that substrate. In normal 

physiological conditions, the fine balance between ROS 

generated and antioxidant defense system is maintained in the 

body. When there is increased production of ROS or impaired 

endogenous antioxidant defense of the body, the body is called 

under oxidative stress. To neutralize the excess ROS and to 

maintain the “redox homeostasis” the antioxidant defense 

system exists in the intracellular and extracellular compartments 

and comprises of enzymatic and nonenzymatic types. The major 

endogenous antioxidants are superoxide dismutase (SOD), 

catalase (CAT), and glutathione (GSH).  

 

Superoxide dismutase: Three isoforms of SOD namely 

manganese-containing SOD (Mn-SOD), copper containing SOD 

(Cu-SOD), and zinc containing SOD (Zn-SOD) have been 

identified in mammalian tissues [41]. Out of these, two isoforms 

Mn-SOD and Cu/Zn-SOD are present in the heart. Mn-SOD 

which localizes to mitochondria is responsible for ~70 % of the 

SOD activity in the heart and ~90% of the activity of the cardiac 

myocytes [42]. The remaining Cu/Zn-SOD is localized in the 

cytosol and extracellular spaces respectively. The importance of 

Mn-SOD is that it plays a critical role in controlling O2- 

generation in mitochondria in myocardium which has been 

demonstrated by Mn-SOD knockout mice which die due to 

cardiomyopathy. SOD catalyzes the dismutation of O2 - into 

H2O2 and O2.   

 

Glutathione: Glutathione, the major soluble antioxidant, is a 

tripeptide containing thiol group and is present in cytosol, 

nucleus as well as mitochondria. Glutathione is a cofactor of 

several detoxifying enzymes against oxidative stress, e.g. 

glutathione peroxidase (GPx), and glutathione transferase and is 

able to regenerate the important antioxidants, Vitamins C and E 

back to their active forms [43]. It can also reduce the tocopherol 

radical of vitamin E directly or indirectly via reduction of 

semidehydroascorbate to ascorbate. It scavenges hydroxyl 

radical and singlet oxygen directly, detoxifying H2O2 and lipid 

peroxides by the catalytic action of GPx [44]. Glutathione 

peroxidase reduces H2O2 and lipid peroxides to water and lipid 

alcohols, respectively, and in turn oxidizes glutathione to 

glutathione disulfide. The glutathione peroxidase/glutathione 

system is important in low-level oxidative stress [45].  

 

Catalase (CAT): Catalase is an intracellular antioxidant enzyme 

that is mainly located in cellular peroxisomes and to some extent 

in the cytosol, which catalyzes the reaction of H2O2 to water and 

molecular oxygen [46]. Catalase is very effective in high-level 

oxidative stress and protects cells from H2O2 produced within 

the cell. The enzyme is especially important in the case of 

limited glutathione content or reduced glutathione peroxidase 

activity. 

 
1.8. ROS and hypertrophic signaling 
  

Involvement of ROS in regulation of cellular function by 

participating in cell signalling system has been well known [47]. 

ROS activate a broad variety of hypertrophy signalling kinases 

and transcription factors [48]. Different signalling pathways are 

involved in Modulation of myocardial growth, matrix 

remodelling and cellular dysfunction by various ROS [49].   

 
1.9. ROS MAP Kinase pathway 
 

In neonatal rat cardiac myocytes, H2O2 induced activation of 

mitogen-activated protein (MAP) kinases which was prevented 

by catalase, but not by superoxide dismutase suggesting that the 

activation of MAP kinase was via H2O2 [50].  In another study 

using, exposure of adult rat ventricular myocytes to H2O2 

resulted in concentration and time-dependent activation of 

extracellular signal-regulated kinases 1 and 2, p38, and c-Jun 

NH2-terminal kinase (JNK) MAP kinases [51]. Activation of 

MAP kinases and ROS generation have been reported following 

mechanical stretch-induced CH in neonatal rat cardiac myocytes 

[52]. Hypertrophy induced by phenylephrine and endothline-1 in 

adult rat cardiac myocyte resulted in activation of MAP kinase 

(ERK), which was suppressed by treatment with N-acetylcystein 

and catalase [53]. Similar findings were reported where alpha-1 

adrenergic stimulation of adult rat cardiac myocyte resulted in 

activation of ERK1/2 and was prevented by inhibiting the 

NADPH-oxidase [54]. A more direct study by using different 

concentration of H2O2 reported a concentration dependent 

response on the activation of MAP kinase pathways and 

subsequent CH or apoptosis [55].  

 
1.10. ROS and NF-kB 
 

NF-kB is another important mediator of CH which has been 

investigated for its regulation by ROS. Hypertrophy induced in 

cultured rat primary neonatal ventricular cardiomyocytes by 
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several hypertrophic agonists, including phenylephrine, 

endothelin-1, and angiotensin II resulted in nuclear translocation 

of NF-kB as well as its transcriptional activity was stimulated 

[56]. In the same study, over expression of NF-kB gene in 

cardiomyocytes led to the spontaneous hypertrophy of 

cardiomyocytes. Tumour necrosis factor-alpha (TNF-alpha)-

induced CH in isolated rat neonatal cardiomyocytes showed 

increase in ROS signal in cardiomyocytes over time [57].  In the 

same study, N-acetyl cysteine, abolished TNF-alpha-induced 

NF-kB activation and hypertrophic responses. G-protein– 

coupled receptor (GPCR) agonist (angiotensin II, endothelin-1, 

and phenylephrine)-induced CH in isolated rat neonatal 

cardiomyocytes has been reported to be mediated through NF-

kB activation via the generation of ROS [58]. In another study, 

apoptosis signalling kinase-1 over expression activated NF-kB 

to stimulate hypertrophy, whereas genetic silencing of apoptosis 

signalling kinase-1 inhibited hypertrophy induced by 

angiotensin II, norepinephrine, and endothelin I [59]. In a recent 

study, the activation of NF-kB by ROS resulting in CH has been 

reported to be mediated by Akt activation. In transgenic mice 

having cytosolic overexpression of Cu/Zn-SOD resulted in 

blunting of hypertrophic response as well as NF-kB activation 

following thoracic aortic banding [60]. This study further verify 

the earlier reports and propose a more detailed mechanism of 

NF-kB activation by ROS and its participation in development 

of CH. 

 
1.11. Evidences of benefits of antioxidants in CH 
 

The strong evidence of the involvement of oxidative stress in 

CH has generated interest in developing strategies to prevent or 

reduce oxidative stress by antioxidants. CH induced by Ang II 

and endothelin was blocked by Tempol, a cell permeable SOD 

mimetic. Treatment with Tempol prevented the increase in 

cardiomyocytes size, superoxide generation and gp91phox 

expression [61]. Dahl salt-sensitive rats fed a high salt diet 

developed CH which was significantly prevented by Tempol. 

Interestingly, Affymatirx gene chip assay revealed that approx. 

48% of the genes were changed in similar fashion in rats treated 

with amlodipine (a calcium channel blocker) and Tempol [62]. 

In GLUT4-knockout mice, Tempol treatment significantly 

reduced morphological and molecular evidence of CH [63].  In 

another study, CH induced by transverse thoracic aortic 

constriction in mice fed on fructose diet, Tempol prevented the 

hypertrophy, LV remodeling, contractile dysfunction and 

oxidative stress [64].  

 

Standard drugs being practiced for the treatment of 

cardiovascular disorder have also been investigated for their 

antioxidant potential and some of their superiority to the class 

has been assigned to their antioxidant potential. Carvedilol, a 

vasodilator, beta-adrenoceptor antagonist have been reported to 

reduce the myocardial oxidative stress [65]. Carvedilol 

prevented hypertrophic changes in stroke-prone spontaneously 

hypertensive rats, and in pressure overload-induced CH in rats 

[66, 67]. Similar findings have been reported in the patients with 

heart failure, where carvedilol improved myocardial function 

along with reduction in myocardial oxidative stress [68]. 

Recently we have reported that Ro5-4864, a peripheral 

benzodiazepine receptor ligand, prevented the development of 

isoproterenol-induced CH [69]. Along with inhibiting the 

increase in cardiomyocytes size it also prevented the 

development of fibrosis and increase in expression of beta-

myosin heavy chain. We and others have also reported that 

U50,488H, a κ-opioid receptor agonist, prevents the 

development of CH and fibrosis [70, 71]. In our study, we 

further demonstrated that U50,488H has antioxidant property as 

it prevented the oxidative stress associated with isoproterenol-

induced CH as well as it also prevented the shift in alpha/beta 

myosin heavy chain [70]. 

 

Apart from these synthetic antioxidants, natural products have 

also been evaluated for their efficacy against CH. Bagchi et al., 

2003 reported the cardioprotective effects proanthocynidines 

present in grape seed extracts [72]. In subsequent reports, the 

oligonmerized proanthocynidines from grape seed prevented the 

isoproterenol-induced CH as well as the associated remodeling. 

It also inhibited the activation of NF-kB [73]. Similarly, green 

tea extract has also shown its protective effect against cardiac 

hypertrophy associated with renal failure [74]. In further studies, 

involving Ang II-induced CH, green tea extract prevented the 

increase in expression of gp91(phox) as well as NADPH-

oxidase activity thereby reducing the generation of reactive 

oxygen species [75].  

 

We have reported a protective effect of Terminalia arjuna, an 

Indian medicinal plant against isoproterenol-induced CH [76]. T. 

arjuna prevented the cardiac remodeling associated with CH as 

well as prevented the shift in alpha/beta-myosin heavy chain 

protein. Moreover, the decrease in endogenous antioxidants and 

increased lipid peroxidation observed with isoproterenol-

induced hypertrophy was also significantly prevented by T. 

arjuna. 

 

A more focused approach towards investigating the role of 

antioxidants in CH has been undertaken by tissue specific over 

expression of endogenous antioxidant enzymes.

 

 
[II] CONCLUSION 
 

Findings from the experimental studies provide a strong 

evidence of causative role of oxidative stress in development of 

CH. Prevention of increase in oxidative stress or reduction of 

ROS generation alleviates CH. Continuous increase in 

understanding of molecular pathways being modulated by 

reactive oxygen species may be helpful in designing and 

evaluating better therapeutic option/s for CH. 
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