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ABSTRACT 
Omics has massively permeated translational clinical research with numerous diseases being 
covered by Omics studies from the genome to the metabolome level. Integrating these disease 
specific Omics tracks appears a logical next step for building the fundament of Systems Biology and 
Systems Medicine. Here, coherence of individual Omics tracks regarding clinical hypothesis, 
samples and clinical descriptors, and finally data handling and integration become pivotal. We 
present a data integration, annotation and relations modeling concept for heterogeneous Omics data 
and workflows. With molecular features at the center of all Omics we link the result profiles from 
different Omics tracks characterizing a specific disease phenotype to a common human molecular 
reference network for allowing a seamless integration and subsequent support in interpretation of 
Omics screening results.  
Our concept rests on data structures for representing objects specified by metadata and content. 
For handling diverse Omics tracks a flexible structure for content is proposed allowing data 
representation at different levels of granularity as demanded by the type of Omics and specific type 
of data. Content on the molecular level includes deep annotation of molecular features on gene and 
protein level. Based on this annotation pair-wise relations between molecular objects are, traversing 
the molecular annotation into a network of relations (molecular feature graph). Such a relation 
network is also built on the Omics data level, combining explicit relations derived from study setup 
and implicit relations generated by mining metadata and content (Omics data graph).  
Finally both graphs are merged utilizing the molecular feature level as common denominator, 
enabling a persistent integration and subsequently interpretation of Omics profiling results in the 
realm of a given clinical hypothesis. We present a case study on integrating transcriptomics and 
proteomics data on chronic kidney disease for demonstrating the feasibility of this concept. 

. 
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[I] INTRODUCTION  
 
With sequencing of the human genome a major cataloguing 
milestone was reached in 2001 [1], followed by rapid 
development of Omics tracks spanning from the genome to the 
metabolome level. A summary statistics on the various Omes 
is provided at the Gerstein lab 
(http://bioinfo.mbb.yale.edu/what-is-it/omes/omes.html), 
clearly indicating the maturity of genomics efforts when 
compared to the other Omes. Omics has in the meantime 
entered clinical sciences aimed at elucidating the 
pathophysiology of diseases, thereby providing the basis for 
identifying biomarkers serving for novel diagnostics and 

therapy [2,3]. Specific profiling has already been forwarded to 
clinical application, e.g. for assessing breast cancer utilizing a 
profile of about 70 features [4]. Numerous prevalent diseases 
have been studied on the various Omics levels, and first efforts 
were introduced for consolidating this body of knowledge in 
open access data repositories. Usually these repositories are 
Omics-specific as e.g. ArrayExpress for transcriptomics [5] or 
PRIDE for proteomics data [6], or Omics profiles are 
consolidated on the level of genes (gene-centric) as in 
Genecards (http://www.genecards.org) [7]. For some etiologies 
also disease-specific databases have been established, with 
Oncomine as an example for consolidating cancer 
transcriptomics data [8]. Platforms integrating various Omics 
levels, however, are less common, although being perfectly in 
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line with approaches in Systems Biology [9], in the meantime 
already expanding at least conceptually towards Systems 
Medicine [10]. Aim of these concepts is broad integration of 
Omics tracks being embedded in clinical data space and 
sample descriptors, with the ultimate goal of providing a 
quantitative representation of disease (outcome)- specific 
molecular processes. 
 
Distinct specifications have to be met in Omics in particular 
including: i) a quantitative assessment of molecular objects, 
and ii) approaching the totality of objects at some layer of 
cellular organization. Advancements in miniaturization, 
improved readout technologies, and parallelization of 
established technologies have significantly contributed to the 
accuracy of quantitative measurement procedures. However, 
major shortcomings remain with cataloguing efforts for 
determining the totality of some sort. Here, genomics may 
come closest to completeness, presently experiencing a further 
boost resting on next generation sequencing technologies at 
least in principal allowing an unbiased decoding of entire 
genomes [11]. However, for all other Omes limitations have to 
be recognized, and even the notion of a “gene” came under 
some scrutiny, [12] particularly when evaluating results of the 
ENCODE consortium [13]. Gene expression array data in most 
cases still focus on protein coding genes, may include some 
resolution on the level of splice variants, but only in rare cases 
expand to assessing miRNAs or more generally ncRNAs. The 
totality of the proteome (and to some extent also of the 
metabolome) is under question on a theoretical level, but is 
rapidly evolving due to parallelized high resolution separation, 
identification, as well as quantification. 
 
For integrative Omics, and here in particular in the medical 
context, numerous additional factors have to be taken into 
consideration, centrally including sample specifications [14]. 
A detailed clinical hypothesis comes in the first place, and 
from there delineation of strict sample inclusion and exclusion 
criteria result. Case-control studies are the typical setup in 
screening, where ideally cases and controls are matched for all 
parameters with known or suspected impact but the clinical 
question of interest (outcome). Here either a dedicated 
prospective sample and data collection has to be established, or 
a retrospective collection is available. Best sources in the latter 
case include interventional studies performed under strict 
quality control. In line with sample specification is assessment 
of sample size for assuring a well powered study from the 
statistical perspective for each individual Omics track 
considered [15]. Omics procedures are applicable for various 
sample types, most frequently utilizing tissue, blood and urine. 
Here standardized sample handling and preparation comes into 
play, where standard operating procedures (SOPs) for storage 
and preparation have been derived for a number of Omics 
tracks [16]. 

 
In the light of the aforesaid the following issues may be 
considered as central for integrating heterogeneous Omics 
profiling results: 
 
1. Thorough definition of the clinical hypothesis 

2. Detailed specification of cases and controls for each 
Omics track 

3. Sample size calculations for each specific Omics track 
4. SOPs for sample and clinical data handling 
5. SOPs for Omics procedures and data generation 
6. Standardized reporting covering each Omics workflow 
 
Regarding reporting conventions numerous initiatives have 
been started, including experiment description as well as 
execution standards [17], and both are to some extend already 
followed in results reporting, with MIAME being a well 
known implementation for transcriptomics [18]. 
 
If different Omics tracks follow defined standards in reporting 
and are in line with a given clinical hypothesis Omics 
integration on the level of result profiles becomes feasible. For 
setting up a cross-Omics results integration two approaches 
may be followed for data preparation: Public domain driven by 
consolidating available information on a given clinical 
hypothesis (e.g. by extracting available profiles on a specific 
disease from ArrayExpress of PRIDE), or implementation of a 
dedicated cross-Omics project explicitly focusing on the 
specific clinical question. The latter approach may even 
expand towards using samples from the very same patients for 
conducting the individual Omics tracks, certainly adding to 
data coherence. Prototypical settings of such initiatives include 
the research consortia predict-IV focusing on toxicological 
aspects (http://www.predict-iv.toxi.uni-wuerzburg.de), or 
SysKid (http://www.syskid.eu) analyzing chronic kidney 
disease by a Systems Biology approach. 
 
Fulfillment of the technological and procedural requirements 
discussed so far enable consolidation of heterogeneous Omics 
feature profiles in a Systems Biology (Medicine) context. The 
next step in implementing such an approach is providing data 
management and integration which serves as basis for 
subsequent analysis, ultimately yielding molecular processes, 
biomarkers and target candidates linked to the specific disease 
and outcome. At this step the incomplete molecular 
cataloguing aspect comes in, adding annotation as a major 
aspect to Omics data management and integration.  
We in the following propose a data consolidation and 
annotation framework specifically aimed at covering 
integration of diverse Omics result profiles directly linked to a 
human molecular reference network. We in particular present 
concepts for explicit as well as implicit relations inference 
aimed at supporting data interpretation in the realm of a given 
clinical hypothesis. 
 
 
[II] MATERIALS AND METHODS 
 
2.1. Object abstraction 
 
The generic component of our concept is an object, resembling a data 
structure holding a unique identifier. Practical notion of an object is kept 
broad, involving molecular objects and Omics data objects. Omics data 
objects, in the following referred to as “records”, involve any type of 
machine readable data relevant for or generated in the course of 
experimental procedures. Typical records include raw data matrices, 
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analysis results (being the core of our integration concept), validation 
results, or sample specifications. Molecular objects on the other hand 
are defined as known and well annotated genes or proteins (but 
conceptually may be expanded for also including RNA, metabolites, 
etc.). For each object metadata are provided allowing further 
characterization of the object category. Next, the effective content of an 
object is given. Molecular content involves annotation data e.g. 
specifying a gene’s functional terms or protein interaction data. Omics 
record content is in a first place characterized by the level of 
granularity, where content of an individual record may involve large 
profiling matrices covering an entire Omics screening experiment, may 
resemble results profiles from case-control studies, or may provide 
individual molecular features and their specific expression value found 
in a particular experiment. A third major element is relations which put 
objects (and their content) into context. Relations again follow the data 
structure concept, where next to a unique identifier metadata are 
provided. Relation specific metadata mainly include a specification of 
the type and further edge content as directionality, source (explicitly 
built or implicitly computed), or evidence level. 
 

 
2.2. Technical implementation 
 
The Java Enterprise Platform (http://java.sun.com/javaee), utilizing a 
post-relational approach as data foundation, provides an efficient 
platform for implementing object oriented concepts as discussed here. 
This platform supports dynamic data models technically enabled via the 
Content Repository for Java (JCR), complemented by Glassfish as 
application server. On the server side the Enterprise Java Bean 
component architecture seamlessly supports an architectural design for 
separating application logic and presentation logic. Apache Jackrabbit 
as a reference implementation of JCR provides further functionality 
including versioning and full text search. Java Server Faces may be 
used for implementing the client side. 
 
 
2.3. Public domain sources 
 
Software platforms, modules, as well as molecular content necessary 
for realizing the technical backbone of the concept presented in this 
work are available in the public domain. The JCR reference Apache 
Jackrabbit is found at http://jackrabbit.apache.org, Java Server Faces is 
found at http://java.sun.com/javaee/javaserverfaces. A manifold of 
modules for supporting data processing workflows is provided by 
Taverna (http://www.taverna.org.uk), with the Taverna engine also 
embedded in Java. Biomart, available at http://www.biomart.org, can be 
customized for supporting the data management side, and additionally 
a website can be configured for providing user interfaces. Biomart 
further allows interfacing via web services for handling large data sets. 
As objects are represented in their context visualization of resulting 
networks is essential for supporting interpretation. Gehlenborg et al. [9] 
recently provided a review on Omics visualization tools, with Cytoscape 
(http://www.cytoscape.org) as a prominent example. Cytoscape allows 
an extended definition and display of node (record) types, necessary 
for visualizing heterogeneous content spanning from clinical sample 
nodes to molecular feature nodes. Different types of molecular 
interaction networks are available for download, including procedural 
interactions from KEGG (http://www.genome.jp/kegg) and PANTHER 
(http://www.pantherdb.org), physical interactions (both experimentally 
determined as well as predicted) from the meta-database OPHID 
(http://ophid.utoronto.ca/ophidv2.201), or interaction networks 
consolidated from multiple sources as STRING (http://string.embl.de). 
For assuring coherence on the name space level for molecular 
reference networks as well as molecular features coming from the 
various Omics levels a reference namespace has to be selected and 

regularly updated. Source providing broad coverage of features are 
found with UNIPROT (http://www.uniprot.org) or NCBI 
(http://www.ncbi.nlm.nih.gov/refseq). 
 
 
[III] RESULTS 
 
3.1. Omics record consolidation 
 
The generic object for Omics data consolidation is a record 
representing data at any given level of detail, e.g. 
characterizing an entire transcriptomics profile or only a single 
feature and its associated expression value. For each record 
metadata may be provided for further characterization of the 
record content. Furthermore object relations can be built for 
introducing dependencies between records. [Figure-1] 
provides an example scheme of the record (node) and relation 
(edge) concept. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
Fig: 1. Node and edge concept for handling records of  
 
Omics workflows: (A) Schematic setup of an Omics track 
involving study plan, expression raw data and analysis results 
data. (B) Formal representation of the workflow as node and 
edge concept with each object encoded as a data structure 
holding a unique identifier and a parameter list (C) 
Representation of the concept in UML (Unified Modeling 
Language, http://www.uml.org). 
 
Omics procedures follow a generic process as exemplified in 
Figure 1A. First a study plan is specified defining the case-
control setup reflecting the clinical hypothesis, methodology 
used, etc. Based on the definition of cases and controls 
samples are linked which effectively undergo screening as 
specified in the study plan. Equivalent to study plans samples 
are represented as records (holding sample source, type, 
amount available, etc. as metadata and content). Frequently 
samples are organized in dedicated databases and may only be 
linked into an Omics record management via unique sample 
identifiers. When retrieving Omics profiles from the public 
domain the level of detail regarding sample-specific clinical 
data is frequently sparse and typically limited to clinical 
categories/stages for the disease. 
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Executing experimental profiling results in an expression 
record (e.g. raw data matrix of case and control samples), 
which after statistical analysis leads to a results record only 
listing significantly differentially regulated features when 
comparing case and control group. Typically such a results 
profile is based on a per-feature statistical test including 
correction for multiple testing. Although substantial 
differences in experimental procedures are evident this basic 
workflow is followed by most Omics tracks assessing 
continuous concentration values (a fact also becoming evident 
when comparing MIAME and MIAPE for transcriptomics and 
proteomics, respectively). 
 
On an abstract level (Figure 1B) a graph representation 
becomes feasible, holding nodes characterized by record 
identifiers (RID) and edges specified by edge identifiers (EID, 
in the example case being directed). Each node and each edge 
is accompanied by a data structure holding a unique identifier. 
In the case of nodes metadata and the content as such are 
stored in the data structure, for edges the node identifiers 
specifying the connectivity via node IDs as well as metadata 
(directionality, type of edge, etc.) are provided. For nodes 
individual content may be represented at arbitrary levels of 
granularity (spanning from whole profile matrices to single 
features) depending on subsequent resolution needs in 
analysis. However, resolution on the level of individual 
features is mandatory in virtually all analysis procedures. For 
practicability issues encapsulation of entire profiles, arrays of 
profiles, or analysis result vectors appears preferable. This 
approach significantly reduces complexity on the record level 
and eases upload and management, but still provides access to 
individual features when using record templates (where e.g. 
feature and associated expression value reside in defined 
content locations). 

 
Omics integration naturally demands a combination of 
profiling efforts, exemplarily shown in [Figure-2]. The 
situation given in Figure 2A is defined by individual study 
plans I-III, respective screening profiles (e.g. raw data) and 
results (list of significantly different features on the 
transcriptome, proteome and metabolome level). Multiple 
result files may be generated (see also the UML in Figure 1C) 
e.g. by varying statistical procedures used for analyzing a 
given case-control group, or by varying the assignment of 
samples as case and control.  
In an ideal setting the studies are fed from a single sample / 
clinical descriptor repository (feasible for explicitly designed 
cross-Omics), or have to be extracted to the extent possible if 
fed from public domain Omics profiling (e.g. gathering 
available Omics studies regarding a specific clinical 
hypothesis). Naturally, a dedicated study will provide a more 
complete and coherent set of records, as these reflect explicitly 
defined inclusion criteria focusing on a specific clinical 
hypothesis.  
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
 

 
 
Fig: 2. Node and edge concept for cross-Omics: (A) 
Schematic setup of three individual Omics tracks fed by two 
sample sources. (B) Formal representation of the Omics tracks 
given in (A) further including two implicit relations (EID_1, 
EID_2). 
 
Certainly, record types are not limited to the examples given in 
Figure 1 and 2. Further record types of value include scientific 
references, standard operating procedures, or experimental 
validation data (including both, profile validation as well as 
complementary data e.g. coming from in-vitro and in-vivo 
models of the clinical setting), among others. 
 
[Figure-3] provides an implementation example for organizing 
the corresponding record management. This reference 
implementation organizes records along specific Omics tracks 
(Figure 3A), and essential records specifying the study 
specifications and results (Figure 3B). For each record 
metadata as well as explicit links between records (in the 
example linking transcriptomics raw data and analysis data, 
Figure 3C) can be specified. All relations specified in Figure 
1A and 2A are explicit, as such defined by the user depositing 
the records, and reflect the logical structure of Omics 
procedures. Of central relevance here is that the Omics tracks 
are driven as independent processes, in a first place only 
(explicitly) linked if using joint samples (and more generic by 
focusing on one specific clinical hypothesis). 
 
However, further implicit relations are present in the collection 
of records (Figure 2B). One set of relations may be derived 
from joint metadata (EID_1) used for characterizing records 
(e.g. using the same tissue type), and a second set of relations 
may be derived from the record content as such (EID_2): 
Software frameworks as Jackrabbit provide full indexing of 
records for text search, and by this mechanism records can be 
linked e.g. based on “overall similarity”, or specifically by e.g. 
invoking on joint molecular identifiers in feature lists. 
Relevant examples include shared gene or protein identifiers 
for extracting relations e.g. between transcriptomics and 
proteomics profiles. 
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Fig: 3. Example layout for cross-Omics record 
management: (A) Repository structure involving three Omics 
tracks and a clinical sample repository. (B) Records assigned to 
a specific Omics track (see Figure 1A). (C) Example metadata 
categories for a transcriptomics raw data record including an 
explicit relation between transcriptomics raw data and analysis 
data. 
 
Annotation of relations certainly goes far beyond the examples 
provided here, as numerous project specific term lists may be 
used. Relevant examples include relations mapping based on 
disease-feature or feature-drug associations: A results file 
record may be mined for occurrence of gene or protein 
identifiers with known links to diseases (e.g. utilizing OMIM 
data, http://www.ncbi.nlm.nih.gov/omim), and if identified the 
diseases can be added as metadata to the record. In a next step 
relations between records can be built based on co-occurrence 
of disease associations. A comparable procedure may be 
relevant for known drug-target associations as e.g. provided by 
STITCH [19]. Yet another relevant procedure is to link 
scientific publications to records via publication-feature 
information e.g. mined from MEDLINE [20]. 

 
  
3.2. Omics feature consolidation 
 
Equivalent to the graph concept for representing Omics 
workflows also molecular features can be consolidated. In a 
standard Omics setup a feature denotes a relevant object (gene, 
transcript, protein, etc.) separating cases and controls utilizing 
a statistical measure. The typical representation of features 
including their relations is graphs, with protein-protein 
interaction networks (PPIs) as well known example [21]. PPIs 
are usually specific regarding the type of relation, e.g. IntAct 
networks encode physical (undirected) interactions [22], 
whereas KEGG represents procedural information also 
including edge directionality [23]. We derived the human 
proteome interaction network omicsNET which combines 
significant annotation with relations modeling. RefSeq 
(http://www.ncbi.nlm.nih.gov/refseq) is used as reference 
source for human genes and proteins providing about 25,000 
objects (considering a canonical sequence set of genes and 
proteins). For each gene/protein deep annotation was 
performed utilizing public domain sources, including tissue 
specific reference gene expression, various sources for 
functional annotation as Gene Ontologies, manifold protein 
interaction data sources and further protein characterization as 
subcellular location, among others. Additionally transcriptional 

control on the level of transcription factors and miRNAs was 
added.  
Technically, data structures were used, each holding a unique 
identifier linking to a gene/protein, and storing the annotation 
data as content. On the basis of the gene/protein-specific 
content a pair-wise relation score was computed which may be 
interpreted as dependency resting on the individual annotation 
given in the content. For further details on omicsNET we refer 
to [24]. A schematic layout of the construction principle is 
given in [Figure-4]. 
 
 
 
 
 
 
 
 
 
 
 

 
Fig: 4. Concept of a molecular feature annotation graph: 
(A) Data structures specified by unique identifiers and extended 
annotation serve as basis for computing dependency weights. 
(B) Network representation holding molecular nodes and 
weighted edges, where weights are delineated from given 
annotation exemplarily shown for two edges (EID_3, EID_5) 
(individual contributions coming from: GEX: tissue specific gene 
expression; TF: joint transcription factor binding sites; INT: 
protein-protein interactions). 
 
Next to consolidated annotation the feature representation 
given in Figure 4 provides the opportunity for automated 
relations modeling. All content associated with molecular 
nodes is parameterized as input for an empirical metafunction f 
which allows computing pair-wise dependencies between 
molecular features. The metafunction integrates similarity 
measures as correlation coefficients for tissue specific gene 
expression profiles, as well as dependency measures as known 
protein interaction (e.g. coming from Intact or KEGG) for a 
given pair. The resulting parameter wx,y approximates an 
aggregate dependency between molecular features, and as this 
is done for all features a complete matrix and graph results. 
This graph can now be used for mapping analysis results 
coming from the various Omics tracks. 

 
 

3.3. Integrating records and features 
 
Obviously the representation of multiple Omics workflows, 
but also the system analyzed by Omics as such, namely an 
extended (although far from being complete) assessment of 
molecular entities may be represented as nodes (content) and 
edges (relations). 
On this basis an integration of both structures is an obvious 
next step, as schematically shown in [Figure-5]. 
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Fig: 5. Integrating Omics results data on a molecular 
feature graph: (A) Record data structures model (see also 
Figure 2B) and (B) feature data structure (see also Figure 4B) 
interlinked on a joint name space level (edge given in red). 
 
Omics operates on molecular name spaces, with gene and 
protein IDs as the most prevalent reference spaces. 
Decomposing all data into records with unique identifiers 
naturally supports building relations between the Omics record 
structure and the molecular feature structure. From this 
concept a persistent relations mapping for Omics results 
integration emerges, embedding sample space, experimental 
procedure logics, and molecular feature landscape. Features 
identified as relevant on the record level (stored in Omics 
result records) have a direct representation on the feature graph 
and vice versa. 
 
As for all relational models querying is naturally supported by 
the presented concept. However, yet another more powerful 
type of querying becomes feasible, namely subgraph 
extraction. An example subgraph is schematically depicted in 
[Figure-6]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig: 6. Navigating in Omics record and molecular feature 
space: For a particular Omics track explicit relations are 
provided from sample records to study plan, further to raw data 
and results data. A specific feature of interest (geneID) given in 
results data shows an implicit link to a results record from a 
second Omics track, and on the molecular level equivalency 
with MID_III, which further shows strong dependency to MID_I 
(and may link to a result profile coming from a different Omics 
track). 
 
Merging the record and feature concepts traverses the 
traditional querying in relational databases into analysis of 
subgraphs. The example provided in Figure 6 uses a particular 
feature from an Omics analysis results file as start point. For 
this feature an implicit link to a second results file coming 
from a different Omics track is detected which allows tracking 
the path upstream this second track. 
At the same time downstream analysis into the molecular 
feature space becomes amenable. Here relations rest on 
computed dependencies based on broad feature annotation. For 
the example case a strong link to a second molecular feature 
may be followed which itself eventually may have become 
evident at some other level (e.g. an associated scientific 
publication) in a second Omics track. 
 
 
 
 
3.4. Example case 
 
We in the following exemplify the presented concept for 
Omics profiling of chronic kidney disease (CKD), a disease 
characterized by progressive loss of kidney function. CKD has 
been extensively studied on various Omics levels with an 
impressive consolidation effort on the transcriptomics level 
provided by the nephromine database 
(http://www.nephromine.org). Next to diabetic nephropathy 
(DN) and hypertensive nephrosclerosis other (mainly 
histopathological) classifications characterize the types of 
CKD, including IgA nephritis, focal segmental 
glomerulosclerosis, membraneous glomerulonephritis, and 
minimal change disease. For these types of CKD specific 
profiles on transcript and proteome level are available in the 
public domain, all derived on disease-type specific case-
control Omics profiling [25]. Utilizing the cross-Omics 
integration concept outlined above provides a graph shown in 
[Figure 7]. 
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Fig: 7. Integrated Omics for chronic kidney disease: 
Sample classification is provided by the histopathological 
representation of the disease (DN: diabetic nephropathy; IgA: 
IgA nephritis; FSG: focal segmental glomerulosclerosis; MG: 
membraneous glomerulosclerosis; MC: minimal change 
disease), each type entering proteomics, transcriptomics, or 
both. Strong arrows indicate paths linking sample type, Omics 
track, and molecular feature space (given by gene symbols).  
 
In this example Omics profiling is included for various types 
of CKD, with feature lists from proteomics characterizing all 
five representations when compared to matched (healthy) 
controls, and three conditions characterized by transcriptomics. 
Implicit linking of Omics result profiles shows APOA1 jointly 
identified by proteomics and transcriptomics when only 
considering the CKD type FSG. Analyzing APOA1 on the 
level of the protein interaction networks a path including the 
molecular identifiers FGA, VWF, COL16A1, THBS3 and 
COL4A4 and COL15A1 becomes evident (and all of these are 
identified as significantly differentially expressed by the 

transcriptomics track), where COL15A1 is additionally 
identified as significantly affected for all types of CKD on the 
basis of proteomics screening results. Consequently, also 
minimal change disease links into this network. Interesting to 
note here is that from a clinical perspective minimal change 
disease presents comparable to prolonged segmental 
glomerulosclerosis.  
 
This Omics results annotation may be further extended by 
including genetic studies on CKD [26] identifying uromodulin 
(UMOD) as affected. UMOD itself is found as differentially 
regulated by the transcriptomics studies, and shows on the 
molecular graph level a shortest path to APOA1 (via CRP and 
APOA2), but also to COL15A1 (via CRP, FN1, and 
COL5A1). 

 
 
 
 
 

 
 

 
[IV] DISCUSSION 
 
Omics procedures have reached a level of maturity enabling 
implementation in standard laboratories, and broad scale 
application is seen in translational and clinical research. 
Standards have been derived for most Omics tracks including 
both experimental design as well as execution, and 
reproducibility of Omics screening shows satisfactory results. 
However, integration of results from different Omics tracks 
and domains, but even of results coming from Omics studies 
focusing on the very same level of molecular organization 
experience shortcomings. We consider two main issues as 
relevant. The first is maintaining strict coherence on the 
experimental side in particular regarding sample inclusion and 
processing criteria. Specifically when addressing complex 
situations as human diseases a strict definition of the clinical 
hypothesis, associated clinical parameters, and outcome have 
to be closely shared for individual Omics tracks aimed for 
integration. For illustrating this issue the clinical presentation 
of “chronic kidney disease” [27] may be used, which as term 
includes various causative conditions and on the level of 
outcome may involve various parameters as levels of 
albuminuria, creatinine, or glomerular filtration rate. Omics 
integration for “chronic kidney disease” will certainly provide 
a far less coherent picture on the molecular level than using 
studies addressing specific type and specific stage of the 
disease. Omics procedures following such strict inclusion are 
certainly less frequently found in the public domain 
emphasizing the importance of dedicated Omics approaches. 
 
The second major issue is data handling concepts supporting 
Omics workflows on the entire level of annotation, spanning 
from the clinical data spectrum to the individual Omics 

profiles and relevant features resulting from the manifold of 
different analysis procedures. As mentioned above disease-
specific Omics repositories slowly emerge, also including to 
some extent metadata information as sample specifications on 
the clinical level. However, most of presently found disease 
specific repositories in the public domain are too broad in 
scope, hamper metadata at an adequate level of detail, and 
mostly include only a specific Omics domain (with 
transcriptome profiles as the most abundant type). 
 
 
We in this work present an Omics integration concept covering 
both, the data spectrum of Omics tracks as well as persistent 
mapping to molecular annotation. Data management concepts 
for Omics in a first place need a specification regarding 
granularity of data representation. Laboratory Information 
Management Systems (LIMS) have been designed for also 
covering Omics [28]. However, from the background of LIMS 
significant standardization of workflows is assumed which for 
individual Omics tracks appears manageable but for cross-
Omics is difficult to maintain (and for repositories built from 
public domain is merely impossible to achieve). For handling 
this issue we propose a record concept, formally represented as 
data structure managing content at arbitrary levels of 
granularity, where templates serve for standardizing 
experimental design and execution. This data encapsulation 
provides easy adaption to expanding scope (e.g. if yet another 
Omics track becomes available and needs integration), but also 
allows a representation of the entire Omics workflow including 
study plans, sample repositories, procedure documentation, 
raw data files, as well as analysis results and verification data. 
The proposed Omics annotation concept takes, next to data 
representation, care of another central aspect, namely relations 
modeling. Uniquely referenced objects allow explicit 
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definition of relation (as raw data file and associated analysis 
file(s)), and if implemented in a proper environment provides 
implicit relations modeling. The latter is of particular relevance 
on the level of cross-Omics data interpretation. 
The combination of Omics procedure annotation and relations 
modeling traverses the concept into a knowledge 
representation framework, formally represented as graph with 
content (nodes) in their context (edges). Such a design 
naturally enables integration with molecular graphs with 
genes/proteins being the predominant levels for data 
interpretation (where e.g. metabolites are mapped to involved 

enzymes, or SNP data to affected genes including their 
regulatory regions). Various molecular graphs resting on deep 
annotation have been derived with omicsNET [24] or STRING 
[29] as prototypical reference. Merging Omics graphs and 
molecular graphs enables extended querying utilizing 
methodologies provided by graph theory [30]. The concept 
discussed above allows extracting subgraphs and paths linking 
molecular features to their neighborhood on the molecular, the 
Omics tracks, and the sample specifications (clinical) level. 
 

 
 
[V] CONCLUSION 
 
Omics integration clearly bears the potential of expanding our 
understanding of complex diseases, and substantial efforts for 
bridging Omics levels have already been reported 
[2,9,10,25,31]. However, for building descriptive models 
characterizing diseases at the interface of clinical 
specifications and molecular processes in the realm of higher 
order structures as proposed for formal and biochemical 
systems [32] more fundamental issues have to be tackled. We 
consider annotation and relations modeling embedded in 
flexible data and knowledge management frameworks as a 
fundament for concise cross-Omics data interpretation on the 
level of descriptive graphs. Only as cataloguing efforts on the 
molecular level expand, and the number of different Omics 
screens on specifically defined clinical etiologies increase, 
model building in the realm of Systems Biology and Systems 
Medicine will become amenable.  
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